remzicam commited on
Commit
7581cc1
1 Parent(s): 906e11b

Upload 2 files

Browse files

color issues fixed

Files changed (2) hide show
  1. app.py +8 -7
  2. requirements.txt +0 -1
app.py CHANGED
@@ -122,12 +122,12 @@ def xai_attributions_html(input_text: str):
122
  html = html.replace("#/s", "")
123
  html = sub("<th.*?/th>", "", html, 4, DOTALL)
124
  html = sub("<td.*?/td>", "", html, 4, DOTALL)
125
- return word_attributions, html
126
 
127
 
128
  def explanation_intro(prediction_label: str):
129
  """
130
- generates model explanaiton markdown from prediction label of the model.
131
 
132
  Args:
133
  prediction_label (str): The label that the model predicted.
@@ -135,10 +135,11 @@ def explanation_intro(prediction_label: str):
135
  Returns:
136
  A string
137
  """
138
- return f"""The model predicted the given sentence as **:blue['{prediction_label}']**.
 
139
  The figure below shows the contribution of each token to this decision.
140
- **:green[Green]** tokens indicate a **positive contribution**, while **:red[red]** tokens indicate a **negative** contribution.
141
- The **bolder** the color, the greater the value."""
142
 
143
 
144
  def explanation_viz(prediction_label: str, word_attributions):
@@ -154,7 +155,7 @@ def explanation_viz(prediction_label: str, word_attributions):
154
  A string
155
  """
156
  top_attention_word = max(word_attributions, key=itemgetter(1))[0]
157
- return f"""The token **_'{top_attention_word}'_** is the biggest driver for the decision of the model as **:blue['{prediction_label}']**."""
158
 
159
 
160
  def word_attributions_dict_creater(word_attributions):
@@ -237,7 +238,7 @@ if submit:
237
  label_probs_figure, prediction_label = label_probs_figure_creater(input_text)
238
  st.plotly_chart(label_probs_figure, config=hide_plotly_bar)
239
  explanation_general = explanation_intro(prediction_label)
240
- st.info(explanation_general)
241
  with st.spinner():
242
  word_attributions, html = xai_attributions_html(input_text)
243
  st.markdown(html, unsafe_allow_html=True)
 
122
  html = html.replace("#/s", "")
123
  html = sub("<th.*?/th>", "", html, 4, DOTALL)
124
  html = sub("<td.*?/td>", "", html, 4, DOTALL)
125
+ return word_attributions, html+"<br>"
126
 
127
 
128
  def explanation_intro(prediction_label: str):
129
  """
130
+ generates model explanaiton html markdown from prediction label of the model.
131
 
132
  Args:
133
  prediction_label (str): The label that the model predicted.
 
135
  Returns:
136
  A string
137
  """
138
+ return f"""<div style="background-color: lightblue;
139
+ color: rgb(0, 66, 128);">The model predicted the given sentence as <span style="color: black"><strong>'{prediction_label}'</strong></span>.
140
  The figure below shows the contribution of each token to this decision.
141
+ <span style="color: darkgreen"><strong> Green </strong></span> tokens indicate a <strong>positive </strong> contribution, while <span style="color: red"><strong> red </strong></span> tokens indicate a <strong>negative</strong> contribution.
142
+ The <strong>bolder</strong> the color, the greater the value.</div><br>"""
143
 
144
 
145
  def explanation_viz(prediction_label: str, word_attributions):
 
155
  A string
156
  """
157
  top_attention_word = max(word_attributions, key=itemgetter(1))[0]
158
+ return f"""The token **_'{top_attention_word}'_** is the biggest driver for the decision of the model as **'{prediction_label}'**"""
159
 
160
 
161
  def word_attributions_dict_creater(word_attributions):
 
238
  label_probs_figure, prediction_label = label_probs_figure_creater(input_text)
239
  st.plotly_chart(label_probs_figure, config=hide_plotly_bar)
240
  explanation_general = explanation_intro(prediction_label)
241
+ st.markdown(explanation_general, unsafe_allow_html=True)
242
  with st.spinner():
243
  word_attributions, html = xai_attributions_html(input_text)
244
  st.markdown(html, unsafe_allow_html=True)
requirements.txt CHANGED
@@ -1,6 +1,5 @@
1
  --find-links https://download.pytorch.org/whl/torch_stable.html
2
  torch==1.13.1+cpu
3
- streamlit==1.16.0
4
  accelerate
5
  plotly
6
  transformers
 
1
  --find-links https://download.pytorch.org/whl/torch_stable.html
2
  torch==1.13.1+cpu
 
3
  accelerate
4
  plotly
5
  transformers