File size: 7,582 Bytes
26540ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d677582
26540ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a60c2e
26540ec
 
 
 
 
 
 
 
 
 
 
 
 
 
f20e1de
26540ec
 
 
 
 
d677582
26540ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f20e1de
26540ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d677582
 
 
 
26540ec
d677582
 
 
 
26540ec
 
f20e1de
26540ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d677582
26540ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d677582
26540ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
from pandas import read_pickle
import streamlit as st
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from streamlit_extras.add_vertical_space import add_vertical_space
from streamlit_extras.colored_header import colored_header
from streamlit_option_menu import option_menu

max_seq_length = 256
repo_id = "all-MiniLM-L6-v2"
data_path = "detailed_movies_top_250_embeds.pkl.xz"
output_column_names = [
    "year",
    "duration",
    "genre",
    "stars",
    "summary",
    "poster_url",
    "trailer_url",
]
vertical_space = 2
st.set_page_config(layout="wide")

colored_header(
    label="SEARCH ENGINE&MOVIE RECOMMENDER: IMDB TOP 250 MOVIES",
    description="""Discover the best movies from the IMDB Top 250 list with advanced semantic search engine and movie recommender.
                    Simply enter a keyword, phrase, or even plot.
                    It provides you with a personalized selection of top-rated films!""",
    color_name="blue-70",
)

hide_streamlit_style = """
            <style>
            #MainMenu {visibility: hidden;}
            footer {visibility: hidden;}
            </style>
            """
st.markdown(hide_streamlit_style, unsafe_allow_html=True)


@st.cache(suppress_st_warning=True, allow_output_mutation=True)
def load_data_model():
    """
    It loads the dataframe and the sentence embedding model.
    
    Returns:
      A tuple of the dataframe and the embedding model
    """
    
    df = read_pickle(data_path)
    embed_model = SentenceTransformer(repo_id)
    embed_model.max_seq_length = max_seq_length 
    return df, embed_model


def top_n_retriever(titles, similarity_scores, n, query_type):
    """
    It takes in a list of titles, a numpy array of similarity scores, the number of results to return,
    and the type of query (search engine or similar movies). It then returns the top n results
    
    Args:
      titles (list[str]): List of movie titles
      similarity_scores (ndarray): The cosine similarity scores of the query movie with all the movies
    in the dataset.
      n (int): The number of results to return
      query_type (str): This is the type of query. It can be either "Search Engine" or "Similar Movies".
    
    Returns:
      The top n movies that are similar to the query movie.
    """
    
    sim_scores = zip(titles, similarity_scores)
    sorted_sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)

    if query_type == "Search Engine":
        sorted_sim_scores = sorted_sim_scores[:n]

    if query_type == "Similar Movies":
        sorted_sim_scores = sorted_sim_scores[1 : n + 1]

    return [i[0] for i in sorted_sim_scores]


def grid_maker(movie_recs, df):
    """
    It takes the list of recommended movies and the dataframe as input and outputs a grid of movie
    posters and details
    
    Args:
      movie_recs (List[str]): - a list of movie titles
      df (object): the dataframe containing the movie data
    """

    for movie in movie_recs:
        poster_col, title_col = st.columns([1, 8])
        (year, duration, genre, stars, summary, poster_url, trailer_url) = (
            df[output_column_names][df.title == movie]
        ).values.flatten()
        poster_col.image(poster_url)
        poster_col.markdown(
            f'<a href={trailer_url}><button style="background-color:GreenYellow;">🎥Trailer</button></a>',
            unsafe_allow_html=True,
        )

        title_col.markdown(f"""<p>
                                <span style=color:#0068C9;font-style:bold;font-size:28px;>{movie} </span>
                                <span style=color:grey;font-style:italic;font-size:14px;> {year} | {duration} | {genre}</span>
                                <span style="background-color:rgba(0, 0, 0, 0.1);"><br>{stars}</span>
                                <span style="word-wrap:break-word;font-family:roboto;font-weight: 700;">
                                <br>{summary}</span>
                                </p>
                            """, unsafe_allow_html=True)
        add_vertical_space(vertical_space)


def filter_df(df, selected_page):
    """
    The function takes in a dataframe, and the selected page, and returns the selected movie, the
    filtered dataframe, and the top_n number of recommendations
    
    Args:
      df (object): the dataframe
      selected_page (str): the page that the user is on
    
    Returns:
      selected_movie, filtered_df, top_n
    """
    filtered_df = df.copy()
    text_input, genre_box, top_n_rec = st.columns([3, 1, 2])
    with genre_box:
        selected_genre = st.selectbox("Genre", genres_list)
    with top_n_rec:
        top_n = st.slider("Number of Recommendations", 1, 15, 5)

    if selected_genre != "All":
        filtered_df = df[df.genre.str.contains(selected_genre)]

    if selected_page == "Similar Movies":
        with text_input:
            selected_movie = st.selectbox("Movie", movie_list)
        return selected_movie, filtered_df, top_n

    if selected_page == "Search Engine":
        with text_input:
            query = st.text_input("Query", value="Mafia")
        return query, filtered_df, top_n


def get_results_button():
    """
    It creates a button that says "Get Results ◀" and returns it
    
    Returns:
      A button object.
    """
    _, _, col_center, _, _ = st.columns(5)
    return col_center.button("Get Results ◀")


df, embed_model = load_data_model()
df["trailer_url"] = df["trailer_url"].astype(str)
movie_list = df["title"].values
genres_list = list(set(df["genre"].str.split(", ").sum()))
genres_list.insert(0, "All")


selected_page = option_menu(
    menu_title=None,  # required
    options=["Search Engine", "Similar Movies"],  # required
    icons=["search", "film"],  # optional
    menu_icon="cast",  # optional
    default_index=0,  # optional
    orientation="horizontal",
    styles={
        "container": {"padding": "0!important", "background-color": "#fafafa"},
        "icon": {"color": "orange", "font-size": "25px"},
        "nav-link": {
            "font-size": "25px",
            "text-align": "left",
            "margin": "0px",
            "--hover-color": "#eee",
        },
        "nav-link-selected": {"background-color": "#0068C9"},
    },
)

if selected_page == "Search Engine":

    query, genre_df, top_n = filter_df(df, selected_page)
    query_embed = embed_model.encode(query)

    bt = get_results_button()

    if bt:
        if query == "":
            st.warning("You should type something", icon="⚠️")
        else:
            semantic_sims = [
                cosine_similarity([query_embed], [movie_embed]).item()
                for movie_embed in genre_df.embedding
            ]
            movie_recs = top_n_retriever(
                genre_df.title, semantic_sims, top_n, selected_page
            )
            add_vertical_space(vertical_space)
            grid_maker(movie_recs, genre_df)


if selected_page == "Similar Movies":
    st.info("Movies are recommended based on plot similarity!")
    selected_movie, genre_df, top_n = filter_df(df, selected_page)

    bt = get_results_button()
    if bt:
        movie_sims = [
            cosine_similarity(
                list(df.embedding[df.title == selected_movie]), [movie_embed]
            ).item()
            for movie_embed in genre_df.embedding
        ]
        movie_recs = top_n_retriever(genre_df.title, movie_sims, top_n, selected_page)
        add_vertical_space(vertical_space)
        grid_maker(movie_recs, genre_df)