Spaces:
Sleeping
Sleeping
File size: 7,512 Bytes
3a6a9b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import os
import sys
import json
import time
import openai
import pickle
import argparse
import requests
from tqdm import tqdm
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM, LlamaTokenizer
from fastchat.model import load_model, get_conversation_template, add_model_args
openai.api_key = "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"
# determinant vs. determiner
# https://wikidiff.com/determiner/determinant
ents_prompt = [
'Noun',
'Verb',
'Adjective',
'Adverb',
'Preposition/Subord',
'Coordinating Conjunction',
# 'Cardinal Number',
'Determiner',
'Noun Phrase',
'Verb Phrase',
'Adjective Phrase',
'Adverb Phrase',
'Preposition Phrase',
'Conjunction Phrase',
'Coordinate Phrase',
'Quantitave Phrase',
'Complex Nominal',
'Clause',
'Dependent Clause',
'Fragment Clause',
'T-unit',
'Complex T-unit',
# 'Fragment T-unit',
]
ents = ['NN', 'VB', 'JJ', 'RB', 'IN', 'CC', 'DT', 'NP', 'VP', 'ADJP', 'ADVP', 'PP', 'CONJP', 'CP', 'QP', 'CN', 'C', 'DC', 'FC', 'T', 'CT']
model_mapping = {
# 'gpt3': 'gpt-3',
'gpt3.5': 'gpt-3.5-turbo-0613',
'vicuna-7b': 'lmsys/vicuna-7b-v1.3',
'vicuna-13b': 'lmsys/vicuna-13b-v1.3',
'vicuna-33b': 'lmsys/vicuna-33b-v1.3',
'fastchat-t5': 'lmsys/fastchat-t5-3b-v1.0',
# 'llama2': 'meta-llama/Llama-2-7b-chat-hf',
'llama-7b': '/data/jiali/llama/hf/7B',
'llama-13b': '/data/jiali/llama/hf/13B',
'llama-30b': '/data/jiali/llama/hf/30B',
'llama-65b': '/data/jiali/llama/hf/65B',
'alpaca': '/data/jiali/alpaca-7B',
# 'koala-7b': 'koala-7b',
# 'koala-13b': 'koala-13b',
}
for m in model_mapping.keys():
for eid, ent in enumerate(ents):
os.makedirs(f'result/openai_result/{m}/ptb/per_ent/{ent}', exist_ok=True)
os.makedirs(f'result/structured_prompt/{m}/ptb', exist_ok=True)
# s = int(sys.argv[1])
# e = int(sys.argv[2])
s = 0
e = 1000
with open('ptb_corpus/sample_uniform_1k_2.txt', 'r') as f:
selected_idx = f.readlines()
selected_idx = [int(i.strip()) for i in selected_idx][s:e]
ptb = []
with open('./ptb_corpus/ptb.jsonl', 'r') as f:
for l in f:
ptb.append(json.loads(l))
## Prompt 1
template_all = '''Please output the <Noun, Verb, Adjective, Adverb, Preposition/Subord, Coordinating Conjunction, Cardinal Number, Determiner, Noun Phrase, Verb Phrase, Adjective Phrase, Adverb Phrase, Preposition Phrase, Conjunction Phrase, Coordinate Phrase, Quantitave Phrase, Complex Nominal, Clause, Dependent Clause, Fragment Clause, T-unit, Complex T-unit, Fragment T-unit> in the following sentence without any additional text in json format: "{}"'''
template_single = '''Please output any <{}> in the following sentence one per line without any additional text: "{}"'''
## Prompt 2
with open('ptb_corpus/structured_prompting_demonstration_42.txt', 'r') as f:
demonstration = f.read()
def para(m):
c = 0
for n, p in m.named_parameters():
c += p.numel()
return c
def main(args=None):
if 'gpt3' in args.model:
pass
else:
path = model_mapping[args.model]
model, tokenizer = load_model(
path,
args.device,
args.num_gpus,
args.max_gpu_memory,
args.load_8bit,
args.cpu_offloading,
revision=args.revision,
debug=args.debug,
)
if args.prompt == 1:
for gid in tqdm(selected_idx, desc='Query'):
text = ptb[gid]['text']
for eid, ent in enumerate(ents):
# if os.path.exists(f'result/openai_result/{args.model}/ptb/per_ent/{ent}/{gid}.pkl') or \
# os.path.exists(f'result/openai_result/{args.model}/ptb/per_ent/{ent}/{gid}.txt'):
# print(gid, ent, 'skip')
# continue
## Get prompt
msg = template_single.format(ents_prompt[eid], text)
if 'gpt' in args.model:
prompt = msg
elif 'vicuna' in args.model or 'alpaca' in args.model or 'fastchat-t5' in args.model:
conv = get_conversation_template(args.model)
conv.append_message(conv.roles[0], msg)
conv.append_message(conv.roles[1], None)
conv.system = ''
prompt = conv.get_prompt().strip()
elif 'llama-' in args.model:
prompt = '### Human: ' + msg + ' ### Assistant:'
## Run
if 'gpt3' in args.model:
outputs = gpt3(prompt)
else:
outputs = fastchat(prompt, model, tokenizer)
with open(f'result/openai_result/{args.model}/ptb/per_ent/{ent}/{gid}.txt', 'w') as f:
f.write(outputs)
if args.prompt == 2:
for gid in tqdm(selected_idx, desc='Query'):
text = ptb[gid]['text']
if os.path.exists(f'result/structured_prompt/{args.model}/ptb/{gid}.pkl') or \
os.path.exists(f'result/structured_prompt/{args.model}/ptb/{gid}.txt'):
print(gid, 'skip')
continue
prompt = demonstration + '\n' + text
if 'gpt3' in args.model:
outputs = gpt3(prompt)
else:
outputs = fastchat(prompt, model, tokenizer)
with open(f'result/structured_prompt/{args.model}/ptb/{gid}.txt', 'w') as f:
f.write(outputs)
def fastchat(prompt, model, tokenizer):
input_ids = tokenizer([prompt]).input_ids
output_ids = model.generate(
torch.as_tensor(input_ids).cuda(),
do_sample=True,
temperature=args.temperature,
repetition_penalty=args.repetition_penalty,
max_new_tokens=args.max_new_tokens,
)
if model.config.is_encoder_decoder:
output_ids = output_ids[0]
else:
output_ids = output_ids[0][len(input_ids[0]) :]
outputs = tokenizer.decode(
output_ids, skip_special_tokens=True, spaces_between_special_tokens=False
)
# print('Empty system message')
# print(f"{conv.roles[0]}: {msg}")
# print(f"{conv.roles[1]}: {outputs}")
return outputs
def gpt3(prompt):
try:
response = openai.ChatCompletion.create(
model=args.model, messages=[{"role": "user", "content": prompt}])
return response
except Exception as err:
print('Error')
print(err)
# time.sleep(1)
raise
if __name__ == "__main__":
parser = argparse.ArgumentParser()
add_model_args(parser)
parser.add_argument("--temperature", type=float, default=0.7)
parser.add_argument("--repetition_penalty", type=float, default=1.0)
parser.add_argument("--max-new-tokens", type=int, default=512)
parser.add_argument("--debug", action="store_true")
parser.add_argument("--message", type=str, default="Hello! Who are you?")
parser.add_argument("--start", type=int, default=0)
parser.add_argument("--end", type=int, default=1)
parser.add_argument("--model", required=True, type=str, default=None)
parser.add_argument("--prompt", required=True, type=int, default=None)
args = parser.parse_args()
# Reset default repetition penalty for T5 models.
if "t5" in args.model and args.repetition_penalty == 1.0:
args.repetition_penalty = 1.2
main(args) |