File size: 18,524 Bytes
3a6a9b6
 
 
 
 
 
 
 
 
 
 
 
 
 
9af2839
 
a862f54
 
9af2839
 
 
 
 
 
 
 
 
 
e0d127e
3a6a9b6
6525dcf
3a6a9b6
 
9af2839
3a6a9b6
9af2839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6525dcf
 
3a6a9b6
 
6525dcf
3a6a9b6
 
 
 
 
6525dcf
 
 
9af2839
 
 
6525dcf
9af2839
6525dcf
 
3a6a9b6
 
6525dcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31e89b7
3a6a9b6
9af2839
3a6a9b6
6525dcf
3a6a9b6
e136236
3a6a9b6
 
 
 
 
 
 
 
 
9af2839
 
 
 
 
 
 
 
 
57539e8
9af2839
 
 
3a6a9b6
b308128
6525dcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b308128
6525dcf
 
 
 
 
b308128
6525dcf
 
 
 
 
 
b308128
6525dcf
 
 
 
 
 
 
 
 
b308128
6525dcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b308128
6525dcf
 
 
b308128
6525dcf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
import os
import sys
import json
import time
import openai
import pickle
import argparse
import requests
from tqdm import tqdm
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM, LlamaTokenizer

from fastchat.model import load_model, get_conversation_template, add_model_args

from nltk.tag.mapping import _UNIVERSAL_TAGS

import gradio as gr

uni_tags = list(_UNIVERSAL_TAGS)
uni_tags[-1] = 'PUNC'

bio_tags = ['B', 'I', 'O']
chunk_tags = ['ADJP', 'ADVP', 'CONJP', 'INTJ', 'LST', 'NP', 'O', 'PP', 'PRT', 'SBAR', 'UCP', 'VP']

syntags = ['NP', 'S', 'VP', 'ADJP', 'ADVP', 'SBAR', 'TOP', 'PP', 'POS', 'NAC', "''", 'SINV', 'PRN', 'QP', 'WHNP', 'RB', 'FRAG',
 'WHADVP', 'NX', 'PRT', 'VBZ', 'VBP', 'MD', 'NN', 'WHPP', 'SQ', 'SBARQ', 'LST', 'INTJ', 'X', 'UCP', 'CONJP', 'NNP', 'CD', 'JJ',
 'VBD', 'WHADJP', 'PRP', 'RRC', 'NNS', 'SYM', 'CC']

openai.api_key = "OPENAI_API_KEY"


# determinant vs. determiner
# https://wikidiff.com/determiner/determinant
ents_prompt = ['Noun','Verb','Adjective','Adverb','Preposition/Subord','Coordinating Conjunction',# 'Cardinal Number',
    'Determiner',
    'Noun Phrase','Verb Phrase','Adjective Phrase','Adverb Phrase','Preposition Phrase','Conjunction Phrase','Coordinate Phrase','Quantitave Phrase','Complex Nominal',
    'Clause','Dependent Clause','Fragment Clause','T-unit','Complex T-unit',# 'Fragment T-unit',
][7:]
ents = ['NN', 'VB', 'JJ', 'RB', 'IN', 'CC', 'DT', 'NP', 'VP', 'ADJP', 'ADVP', 'PP', 'CONJP', 'CP', 'QP', 'CN', 'C', 'DC', 'FC', 'T', 'CT'][7:]


ents_prompt_uni_tags = ['Verb', 'Noun', 'Pronoun', 'Adjective', 'Adverb', 'Preposition and Postposition', 'Coordinating Conjunction', 
                        'Determiner', 'Cardinal Number', 'Particles or other function words', 
                        'Words that cannot be assigned a POS tag', 'Punctuation']

ents = uni_tags + ents
ents_prompt = ents_prompt_uni_tags + ents_prompt

for i, j in zip(ents, ents_prompt):
    print(i, j)
# raise


model_mapping = {
    # 'gpt3': 'gpt-3',
    'gpt3.5': 'gpt-3.5-turbo-0613',
    'vicuna-7b': 'lmsys/vicuna-7b-v1.3',
    'vicuna-13b': 'lmsys/vicuna-13b-v1.3',
    'vicuna-33b': 'lmsys/vicuna-33b-v1.3',
    'fastchat-t5': 'lmsys/fastchat-t5-3b-v1.0',
    # 'llama2-7b': 'meta-llama/Llama-2-7b-hf',
    # 'llama2-13b': 'meta-llama/Llama-2-13b-hf',
    # 'llama2-70b': 'meta-llama/Llama-2-70b-hf',
    'llama-7b': './llama/hf/7B',
    'llama-13b': './llama/hf/13B',
    'llama-30b': './llama/hf/30B',
    # 'llama-65b': './llama/hf/65B',
    'alpaca': './alpaca-7B',
    # 'koala-7b': 'koala-7b',
    # 'koala-13b': 'koala-13b',
}

for m in model_mapping.keys():
    for eid, ent in enumerate(ents):
        os.makedirs(f'result/prompt1_qa/{m}/ptb/per_ent/{ent}', exist_ok=True)
        
        os.makedirs(f'result/prompt2_instruction/pos_tagging/{m}/ptb', exist_ok=True)
        os.makedirs(f'result/prompt2_instruction/chunking/{m}/ptb', exist_ok=True)
        os.makedirs(f'result/prompt2_instruction/parsing/{m}/ptb', exist_ok=True)

        os.makedirs(f'result/prompt3_structured_prompt/pos_tagging/{m}/ptb', exist_ok=True)
        os.makedirs(f'result/prompt3_structured_prompt/chunking/{m}/ptb', exist_ok=True)
        os.makedirs(f'result/prompt3_structured_prompt/parsing/{m}/ptb', exist_ok=True)


#s = int(sys.argv[1])
#e = int(sys.argv[2])

#s = 0
#e = 1000
with open('sample_uniform_1k_2.txt', 'r') as f:
    selected_idx = f.readlines()
selected_idx = [int(i.strip()) for i in selected_idx]#[s:e]


ptb = []
with open('ptb.jsonl', 'r') as f:
    for l in f:
        ptb.append(json.loads(l))


## Prompt 1
template_all = '''Please output the <Noun, Verb, Adjective, Adverb, Preposition/Subord, Coordinating Conjunction, Cardinal Number, Determiner, Noun Phrase, Verb Phrase, Adjective Phrase, Adverb Phrase, Preposition Phrase, Conjunction Phrase, Coordinate Phrase, Quantitave Phrase, Complex Nominal, Clause, Dependent Clause, Fragment Clause, T-unit, Complex T-unit, Fragment T-unit> in the following sentence without any additional text in json format: "{}"'''
template_single = '''Please output any <{}> in the following sentence one per line without any additional text: "{}"'''

## Prompt 2
prompt2_pos = '''Please pos tag the following sentence using Universal POS tag set without generating any additional text: {}'''
prompt2_chunk = '''Please do sentence chunking for the following sentence as in CoNLL 2000 shared task without generating any addtional text: {}'''
prompt2_parse = '''Generate textual representation of the constituency parse tree of the following sentence using Penn TreeBank tag set without outputing any additional text: {}'''

prompt2_chunk = '''Please chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {}'''

## Prompt 3
with open('demonstration_3_42_pos.txt', 'r') as f:
    demon_pos = f.read()
with open('demonstration_3_42_chunk.txt', 'r') as f:
    demon_chunk = f.read()
with open('demonstration_3_42_parse.txt', 'r') as f:
    demon_parse = f.read()


def para(m):
    c = 0
    for n, p in m.named_parameters():
        c += p.numel()
    return c

def main(args=None):

    gid_list = selected_idx[args.start:args.end]


    if 'gpt3' in args.model_path:
        pass

    else:
        path = model_mapping[args.model_path]
        model, tokenizer = load_model(
            path,
            args.device,
            args.num_gpus,
            args.max_gpu_memory,
            args.load_8bit,
            args.cpu_offloading,
            revision=args.revision,
            debug=args.debug,
        )

        whitelist_ids_pos = [tokenizer.encode(word)[1] for word in uni_tags]
        bad_words_ids_pos = [[ids] for ids in range(tokenizer.vocab_size) if ids not in whitelist_ids_pos]

        whitelist_ids_bio = [tokenizer.encode(word)[1] for word in bio_tags]
        bad_words_ids_bio = [[ids] for ids in range(tokenizer.vocab_size) if ids not in whitelist_ids_bio]

        whitelist_ids_chunk = [tokenizer.encode(word)[1] for word in chunk_tags]
        bad_words_ids_chunk = [[ids] for ids in range(tokenizer.vocab_size) if ids not in whitelist_ids_chunk]

        whitelist_ids_parse = [tokenizer.encode(word)[1] for word in syntags]
        bad_words_ids_parse = [[ids] for ids in range(tokenizer.vocab_size) if ids not in whitelist_ids_parse]


    if args.prompt == 1:
        for gid in tqdm(gid_list, desc='Query'):
            text = ptb[gid]['text']

            for eid, ent in enumerate(ents):
                os.makedirs(f'result/prompt1_qa/{args.model_path}/ptb/per_ent/{ent}', exist_ok=True)
                
                if ent == 'NOUN' and not os.path.exists(f'result/prompt1_qa/{args.model_path}/ptb/per_ent/NOUN'):
                    os.system(f'ln -sT ./NN result/prompt1_qa/{args.model_path}/ptb/per_ent/NOUN')
                if ent == 'VERB' and not os.path.exists(f'result/prompt1_qa/{args.model_path}/ptb/per_ent/VERB'):
                    os.system(f'ln -sT ./VB result/prompt1_qa/{args.model_path}/ptb/per_ent/VERB')
                if ent == 'ADJ' and not os.path.exists(f'result/prompt1_qa/{args.model_path}/ptb/per_ent/ADJ'):
                    os.system(f'ln -sT ./JJ result/prompt1_qa/{args.model_path}/ptb/per_ent/ADJ')
                if ent == 'ADV' and not os.path.exists(f'result/prompt1_qa/{args.model_path}/ptb/per_ent/ADV'):
                    os.system(f'ln -sT ./RB result/prompt1_qa/{args.model_path}/ptb/per_ent/ADV')
                if ent == 'CONJ' and not os.path.exists(f'result/prompt1_qa/{args.model_path}/ptb/per_ent/CONJ'):
                    os.system(f'ln -sT ./CC result/prompt1_qa/{args.model_path}/ptb/per_ent/CONJ')
                if ent == 'DET' and not os.path.exists(f'result/prompt1_qa/{args.model_path}/ptb/per_ent/DET'):
                    os.system(f'ln -sT ./DT result/prompt1_qa/{args.model_path}/ptb/per_ent/DET')
                if ent == 'ADP' and not os.path.exists(f'result/prompt1_qa/{args.model_path}/ptb/per_ent/ADP'):
                    os.system(f'ln -sT ./DT result/prompt1_qa/{args.model_path}/ptb/per_ent/IN')

                if os.path.exists(f'result/prompt1_qa/{args.model_path}/ptb/per_ent/{ent}/{gid}.txt'):
                    print(gid, ent, 'skip')
                    continue
                    

                ## Get prompt
                msg = template_single.format(ents_prompt[eid], text)

                ## Run
                if 'gpt3' in args.model_path:
                    if os.path.exists(f'result/prompt1_qa/{args.model_path}/ptb/per_ent/{ent}/{gid}.pkl'):
                        print('Found cache')
                        with open(f'result/prompt1_qa/{args.model_path}/ptb/per_ent/{ent}/{gid}.pkl', 'rb') as f:
                            outputs = pickle.load(f)
                        outputs = outputs['choices'][0]['message']['content']
                    else:
                        outputs = gpt3(msg)
                        if outputs is None:
                            continue
                        time.sleep(0.2)
                    
                else:
                    conv = get_conversation_template(args.model_path)
                    conv.append_message(conv.roles[0], msg)
                    conv.append_message(conv.roles[1], None)
                    conv.system = ''
                    prompt = conv.get_prompt().strip()
                    outputs = fastchat(prompt, model, tokenizer)

                with open(f'result/prompt1_qa/{args.model_path}/ptb/per_ent/{ent}/{gid}.txt', 'w') as f:
                    f.write(outputs)


    if args.prompt == 2:
        for gid in tqdm(gid_list, desc='Query'):
            text = ptb[gid]['text']

            ## POS tagging
            if os.path.exists(f'result/prompt2_instruction/pos_tagging/{args.model_path}/ptb/{gid}.txt'):
                print(gid, 'skip')

            else:
                msg = prompt2_pos.format(text)

                if 'gpt3' in args.model_path:
                    outputs = gpt3(msg)
                    if outputs is None:
                        continue
                    time.sleep(0.2)

                else:
                    conv = get_conversation_template(args.model_path)
                    conv.append_message(conv.roles[0], msg)
                    conv.append_message(conv.roles[1], None)
                    conv.system = ''
                    prompt = conv.get_prompt()

                    outputs = fastchat(prompt, model, tokenizer)

                with open(f'result/prompt2_instruction/pos_tagging/{args.model_path}/ptb/{gid}.txt', 'w') as f:
                    f.write(outputs)


            ## Sentence chunking
            if os.path.exists(f'result/prompt2_instruction/chunking/{args.model_path}/ptb/{gid}.txt'):
                print(gid, 'skip')
            if False:
                pass
            else:
                msg = prompt2_chunk.format(text)

                if 'gpt3' in args.model_path:
                    outputs = gpt3(msg)
                    if outputs is None:
                        continue
                    time.sleep(0.2)

                else:
                    conv = get_conversation_template(args.model_path)
                    conv.append_message(conv.roles[0], msg)
                    conv.append_message(conv.roles[1], None)
                    conv.system = ''
                    prompt = conv.get_prompt()

                    outputs = fastchat(prompt, model, tokenizer)

                print(args.model_path, gid, outputs)
                with open(f'result/prompt2_instruction/chunking/{args.model_path}/ptb/{gid}.txt', 'w') as f:
                    f.write(outputs)

            
            ## Parsing
            if os.path.exists(f'result/prompt2_instruction/parsing/{args.model_path}/ptb/{gid}.txt'):
                print(gid, 'skip')
            
            else:
                msg = prompt2_parse.format(text)

                if 'gpt3' in args.model_path:
                    outputs = gpt3(msg)
                    if outputs is None:
                        continue
                    time.sleep(0.2)

                else:
                    conv = get_conversation_template(args.model_path)
                    conv.append_message(conv.roles[0], msg)
                    conv.append_message(conv.roles[1], None)
                    conv.system = ''
                    prompt = conv.get_prompt()

                    outputs = fastchat(prompt, model, tokenizer)

                with open(f'result/prompt2_instruction/parsing/{args.model_path}/ptb/{gid}.txt', 'w') as f:
                    f.write(outputs)



    if args.prompt == 3:
        for gid in tqdm(gid_list, desc='Query'):
            text = ptb[gid]['text']
            tokens = ptb[gid]['tokens']
            poss = ptb[gid]['uni_poss']

            ## POS tagging
            if os.path.exists(f'result/prompt3_structured_prompt/pos_tagging/{args.model_path}/ptb/{gid}.txt'):
                print(gid, 'skip')
                continue

            prompt = demon_pos + '\n' + 'C: ' + text + '\n' + 'T: '

            if 'gpt3' in args.model_path:
                outputs = gpt3(prompt)
                if outputs is None:
                    continue
                time.sleep(0.2)

            else:
                pred_poss = []
                for _tok, _pos in zip(tokens, poss):
                    prompt = prompt + ' ' + _tok + '_'
                    outputs = structured_prompt(prompt, model, tokenizer, bad_words_ids_pos)
                    prompt = prompt + outputs
                    pred_poss.append(outputs)

            outputs = ' '.join(pred_poss)
            with open(f'result/prompt3_structured_prompt/pos_tagging/{args.model_path}/ptb/{gid}.txt', 'w') as f:
                f.write(outputs)


            ## Chunking
            if os.path.exists(f'result/prompt3_structured_prompt/chunking/{args.model_path}/ptb/{gid}.txt'):
                print(gid, 'skip')
                continue

            prompt = demon_chunk + '\n' + 'C: ' + text + '\n' + 'T: '

            if 'gpt3' in args.model_path:
                outputs = gpt3(prompt)
                print(outputs)
                if outputs is None:
                    continue
                time.sleep(0.2)

            else:
                pred_chunk = []
                for _tok, _pos in zip(tokens, poss):
                    prompt = prompt + ' ' + _tok + '_'

                    # Generate BIO
                    outputs_bio = structured_prompt(prompt, model, tokenizer, bad_words_ids_bio)
                    prompt = prompt + outputs_bio + '-'

                    # Generate tag
                    outputs_chunk = structured_prompt(prompt, model, tokenizer, bad_words_ids_chunk)
                    prompt = prompt + outputs_chunk

                    pred_chunk.append((outputs_bio + '-' + outputs_chunk))

                outputs = ' '.join(pred_chunk)

            with open(f'result/prompt3_structured_prompt/chunking/{args.model_path}/ptb/{gid}.txt', 'w') as f:
                f.write(outputs)

            ## Parsing
            if os.path.exists(f'result/prompt3_structured_prompt/parsing/{args.model_path}/ptb/{gid}.txt'):
                print(gid, 'skip')
                continue

            prompt = demon_parse + '\n' + 'C: ' + text + '\n' + 'T: '

            if 'gpt3' in args.model_path:
                outputs = gpt3(prompt)
                if outputs is None:
                    continue
                time.sleep(0.2)

            else:
                pred_syn = []
                for _tok, _pos in zip(tokens, poss):
                    prompt = prompt + _tok + '_'
                    outputs = structured_prompt(prompt, model, tokenizer, bad_words_ids_parse)
                    pred_syn.append(outputs)

            with open(f'result/prompt3_structured_prompt/parsing/{args.model_path}/ptb/{gid}.txt', 'w') as f:
                f.write(' '.join(pred_syn))


def structured_prompt(prompt, model, tokenizer, bad_words_ids):
    input_ids = tokenizer([prompt]).input_ids
    output_ids = model.generate(
        torch.as_tensor(input_ids).cuda(),
        max_new_tokens=1,
        bad_words_ids=bad_words_ids,
    )

    if model.config.is_encoder_decoder:
        output_ids = output_ids[0]
    else:
        output_ids = output_ids[0][len(input_ids[0]) :]
    outputs = tokenizer.decode(
        output_ids, skip_special_tokens=True, spaces_between_special_tokens=False
    )

    return outputs


def fastchat(prompt, model, tokenizer):
    input_ids = tokenizer([prompt]).input_ids
    output_ids = model.generate(
        torch.as_tensor(input_ids).cuda(),
        do_sample=True,
        temperature=args.temperature,
        repetition_penalty=args.repetition_penalty,
        max_new_tokens=args.max_new_tokens,
    )

    if model.config.is_encoder_decoder:
        output_ids = output_ids[0]
    else:
        output_ids = output_ids[0][len(input_ids[0]) :]
    outputs = tokenizer.decode(
        output_ids, skip_special_tokens=True, spaces_between_special_tokens=False
    )

    #print('Empty system message')
    #print(f"{conv.roles[0]}: {msg}")
    #print(f"{conv.roles[1]}: {outputs}")

    return outputs


def gpt3(prompt):
    try:
        response = openai.ChatCompletion.create(
            model=model_mapping[args.model_path], messages=[{"role": "user", "content": prompt}])

        return response['choices'][0]['message']['content']

    except Exception as err:
        print('Error')
        print(err)

        return None


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    add_model_args(parser)
    parser.add_argument("--temperature", type=float, default=0.7)
    parser.add_argument("--repetition_penalty", type=float, default=1.0)
    parser.add_argument("--max-new-tokens", type=int, default=512)
    parser.add_argument("--debug", action="store_true")
    parser.add_argument("--message", type=str, default="Hello! Who are you?")
    parser.add_argument("--start", type=int, default=0)
    parser.add_argument("--end", type=int, default=1000)
    parser.add_argument("--prompt", required=True, type=int, default=None)
    # parser.add_argument("--system_msg", required=True, type=str, default='default_system_msg')
    args = parser.parse_args()

    # Reset default repetition penalty for T5 models.
    if "t5" in args.model_path and args.repetition_penalty == 1.0:
        args.repetition_penalty = 1.2

    main(args)