LingEval / app.py
research14's picture
testing add custom ling ent
2d7bc30
raw
history blame
22.9 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import lftk
import spacy
import time
import os
import openai
import json
# Load the Vicuna 7B model and tokenizer
vicuna_tokenizer = AutoTokenizer.from_pretrained("lmsys/vicuna-7b-v1.3")
vicuna_model = AutoModelForCausalLM.from_pretrained("lmsys/vicuna-7b-v1.3")
# Load the LLaMA 7b model and tokenizer
llama_tokenizer = AutoTokenizer.from_pretrained("daryl149/llama-2-7b-chat-hf")
llama_model = AutoModelForCausalLM.from_pretrained("daryl149/llama-2-7b-chat-hf")
def linguistic_features_fn(message):
# Load a trained spaCy pipeline
nlp = spacy.load("en_core_web_sm")
# Create a spaCy doc object
doc = nlp(message)
# Initiate LFTK extractor by passing in the doc
LFTK = lftk.Extractor(docs=doc)
# Customize LFTK extractor (optional)
LFTK.customize(stop_words=True, punctuations=False, round_decimal=3)
# Use LFTK to dynamically extract handcrafted linguistic features
extracted_features = LFTK.extract(features = ["a_word_ps", "a_kup_pw", "n_noun"])
formatted_output = json.dumps(extracted_features, indent=2)
print(formatted_output)
return formatted_output
def update_api_key(new_key):
print("update_api_key ran")
global api_key
os.environ['OPENAI_API_TOKEN'] = new_key
openai.api_key = os.environ['OPENAI_API_TOKEN']
def chat(user_prompt, model = 'gpt-3.5-turbo', temperature = 0, verbose = False):
''' Normal call of OpenAI API '''
response = openai.ChatCompletion.create(
temperature = temperature,
model=model,
messages=[
{"role": "user", "content": user_prompt}
])
res = response['choices'][0]['message']['content']
if verbose:
print('User prompt:', user_prompt)
print('GPT response:', res)
return res
def format_chat_prompt(message, chat_history, max_convo_length):
prompt = ""
for turn in chat_history[-max_convo_length:]:
user_message, bot_message = turn
prompt = f"{prompt}\nUser: {user_message}\nAssistant: {bot_message}"
prompt = f"{prompt}\nUser: {message}\nAssistant:"
return prompt
def gpt_respond(have_key, tab_name, message, chat_history, max_convo_length = 10):
if (have_key == "No"):
return "", chat_history
formatted_prompt = format_chat_prompt(message, chat_history, max_convo_length)
print('GPT ling ents Prompt + Context:')
print(formatted_prompt)
bot_message = chat(user_prompt = f'''Output any <{tab_name}> in the following sentence one per line: "{formatted_prompt}"''')
chat_history.insert(0, (message, bot_message))
return "", chat_history
def vicuna_respond(tab_name, message, chat_history):
formatted_prompt = f'''Output any {tab_name} in the following sentence one per line: "{message}"'''
print('Vicuna Ling Ents Fn - Prompt + Context:')
print(formatted_prompt)
input_ids = vicuna_tokenizer.encode(formatted_prompt, return_tensors="pt")
output_ids = vicuna_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(bot_message)
# Remove formatted prompt from bot_message
bot_message = bot_message.replace(formatted_prompt, '')
print(bot_message)
chat_history.insert(0, (formatted_prompt, bot_message))
time.sleep(2)
return tab_name, "", chat_history
def llama_respond(tab_name, message, chat_history):
formatted_prompt = f'''Output any {tab_name} in the following sentence one per line: "{message}"'''
# print('Llama - Prompt + Context:')
# print(formatted_prompt)
input_ids = llama_tokenizer.encode(formatted_prompt, return_tensors="pt")
output_ids = llama_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
bot_message = llama_tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Remove formatted prompt from bot_message
bot_message = bot_message.replace(formatted_prompt, '')
# print(bot_message)
chat_history.insert(0, (formatted_prompt, bot_message))
time.sleep(2)
return tab_name, "", chat_history
def gpt_strategies_respond(have_key, strategy, task_name, task_ling_ent, message, chat_history, max_convo_length = 10):
if (have_key == "No"):
return "", chat_history
formatted_system_prompt = ""
if (task_name == "POS Tagging"):
if (strategy == "S1"):
formatted_system_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"'''
elif (strategy == "S2"):
formatted_system_prompt = f'''POS tag the following sentence using Universal POS tag set: "{message}"'''
elif (strategy == "S3"):
with open('demonstration_3_42_pos.txt', 'r') as f:
demon_pos = f.read()
formatted_system_prompt = f'''"{demon_pos}". Using the POS tag structure above, POS tag the following sentence: "{message}"'''
elif (task_name == "Chunking"):
if (strategy == "S1"):
formatted_system_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"'''
elif (strategy == "S2"):
formatted_system_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags: "{message}"'''
elif (strategy == "S3"):
with open('demonstration_3_42_chunk.txt', 'r') as f:
demon_chunk = f.read()
formatted_system_prompt = f'''"{demon_chunk}". Using the POS tag structure above, POS tag the following sentence: "{message}"'''
formatted_prompt = format_chat_prompt(message, chat_history, max_convo_length)
print('GPT coreNLP Prompt + Context:')
print(formatted_prompt)
bot_message = chat(user_prompt = formatted_system_prompt)
chat_history.insert(0, (message, bot_message))
return "", chat_history
def vicuna_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history):
formatted_prompt = ""
if (task_name == "POS Tagging"):
if (strategy == "S1"):
formatted_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"'''
elif (strategy == "S2"):
formatted_prompt = f'''POS tag the following sentence using Universal POS tag set: "{message}"'''
elif (strategy == "S3"):
with open('demonstration_3_42_pos.txt', 'r') as f:
demon_pos = f.read()
formatted_prompt = f'''"{demon_pos}". Using the POS tag structure above, POS tag the following sentence: "{message}"'''
elif (task_name == "Chunking"):
if (strategy == "S1"):
formatted_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"'''
elif (strategy == "S2"):
formatted_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags: "{message}"'''
elif (strategy == "S3"):
with open('demonstration_3_42_chunk.txt', 'r') as f:
demon_chunk = f.read()
formatted_prompt = f'''"{demon_chunk}". Using the Chunking structure above, Chunk the following sentence: "{message}"'''
print('Vicuna Strategy Fn - Prompt + Context:')
print(formatted_prompt)
input_ids = vicuna_tokenizer.encode(formatted_prompt, return_tensors="pt")
output_ids = vicuna_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(bot_message)
# Remove formatted prompt from bot_message
bot_message = bot_message.replace(formatted_prompt, '')
print(bot_message)
chat_history.insert(0, (formatted_prompt, bot_message))
time.sleep(2)
return task_name, "", chat_history
def llama_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history):
formatted_prompt = ""
if (task_name == "POS Tagging"):
if (strategy == "S1"):
formatted_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"'''
elif (strategy == "S2"):
formatted_prompt = f'''POS tag the following sentence using Universal POS tag set: "{message}"'''
elif (strategy == "S3"):
with open('demonstration_3_42_pos.txt', 'r') as f:
demon_pos = f.read()
formatted_prompt = f'''"{demon_pos}". Using the POS tag structure above, POS tag the following sentence: "{message}"'''
elif (task_name == "Chunking"):
if (strategy == "S1"):
formatted_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"'''
elif (strategy == "S2"):
formatted_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags: "{message}"'''
elif (strategy == "S3"):
with open('demonstration_3_42_chunk.txt', 'r') as f:
demon_chunk = f.read()
formatted_prompt = f'''"{demon_chunk}". Using the Chunking structure above, Chunk the following sentence: "{message}"'''
print('Llama Strategies - Prompt + Context:')
print(formatted_prompt)
input_ids = llama_tokenizer.encode(formatted_prompt, return_tensors="pt")
output_ids = llama_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
bot_message = llama_tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(bot_message)
# Remove formatted prompt from bot_message
bot_message = bot_message.replace(formatted_prompt, '')
print(bot_message)
chat_history.insert(0, (formatted_prompt, bot_message))
time.sleep(2)
return task_name, "", chat_history
def interface():
with gr.Tab("Linguistic Entities"):
gr.Markdown("""
## 📜 Step-By-Step Instructions
- Enter a sentence for three models to process (Vicuna-7b, LLaMA-7b and GPT-3.5).
- If you own an OpenAI API key, select 'Yes' in the dropdown. If you don't own one, select 'No'.
- If you selected 'Yes', enter your OpenAI API Key [Link to your OpenAI keys](https://platform.openai.com/api-keys).
- If you selected 'No', leave the 'OpenAI Key' field blank and continue with the rest.
- Select a Linguistic Entity from the Dropdown.
- Click 'Submit' to send your inputs to the models.
- To submit a new prompt, repeat all the steps above and click 'Submit' again. Your new prompt should appear on the top of previous ones.
### ⏳ After you click 'Submit', the models will take a couple seconds to process your inputs.
### 🤖 Then, the models will output the linguistic entity found in your prompt based on your selection!
Note: If you get an 'Error' in the gpt-3.5 model, check the following:
- Check that you entered your key correctly without any extra characters.
- If you used a free key, it means you exceeded your quota from the free API Key.
""")
# Inputs
ling_ents_prompt = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter")
with gr.Row():
# Will activate after getting API key
have_key2 = gr.Dropdown(["Yes", "No"], label="Do you own an API Key?", scale=0.5)
ling_ents_apikey_input = gr.Textbox(label="Open AI Key", placeholder="Enter your Openai key here", type="password")
linguistic_entities = gr.Dropdown(["Noun", "Determiner", "Noun phrase", "Verb phrase", "Dependent clause", "T-units", "Other"], label="Linguistic Entity")
with gr.Accordion("If other, enter your own Linguistic Entity here:"):
linguistic_entities_other = gr.Textbox(show_label=False, placeholder="Enter your own Linguistic Entity")
ling_ents_btn = gr.Button(value="Submit")
# Outputs
user_prompt_1 = gr.Textbox(label="Original prompt")
linguistic_features_textbox = gr.Textbox(label="Linguistic Features", disabled=True)
with gr.Row():
gpt_ling_ents_chatbot = gr.Chatbot(label="gpt-3.5")
llama_ling_ents_chatbot = gr.Chatbot(label="llama-7b")
vicuna_ling_ents_chatbot = gr.Chatbot(label="vicuna-7b")
# clear = gr.ClearButton(components=[ling_ents_prompt, ling_ents_apikey_input, have_key2, linguistic_entities,
# vicuna_ling_ents_chatbot, llama_ling_ents_chatbot, gpt_ling_ents_chatbot,])
# Event Handler for API Key
ling_ents_btn.click(update_api_key, inputs=ling_ents_apikey_input)
def update_dropdown(dropdown_prompt, other_prompt):
if (dropdown_prompt == "Other"):
return other_prompt
else:
return dropdown_prompt
ling_ents_btn.click(update_dropdown, inputs=[linguistic_entities, linguistic_entities_other], outputs=[linguistic_entities])
def update_textbox(prompt):
return prompt
ling_ents_btn.click(fn=update_textbox, inputs=ling_ents_prompt, outputs=user_prompt_1, api_name="ling_ents_btn")
# Show features from LFTK
ling_ents_btn.click(linguistic_features_fn, inputs=[ling_ents_prompt], outputs=[linguistic_features_textbox])
# Event Handler for GPT 3.5 Chatbot
ling_ents_btn.click(gpt_respond, inputs=[have_key2, linguistic_entities, ling_ents_prompt, gpt_ling_ents_chatbot],
outputs=[ling_ents_prompt, gpt_ling_ents_chatbot])
# Event Handler for LLaMA Chatbot
ling_ents_btn.click(llama_respond, inputs=[linguistic_entities, ling_ents_prompt, llama_ling_ents_chatbot],
outputs=[linguistic_entities, ling_ents_prompt, llama_ling_ents_chatbot])
# Event Handler for Vicuna Chatbot
ling_ents_btn.click(vicuna_respond, inputs=[linguistic_entities, ling_ents_prompt, vicuna_ling_ents_chatbot],
outputs=[linguistic_entities, ling_ents_prompt, vicuna_ling_ents_chatbot])
with gr.Tab("CoreNLP"):
with gr.Row():
gr.Markdown("""
## 📜 Step-By-Step Instructions
- Enter a sentence for three models to process (Vicuna-7b, LLaMA-7b and GPT-3.5).
- If you own an OpenAI API key, select 'Yes' in the dropdown. If you don't own one, select 'No'.
- If you selected 'Yes', enter your OpenAI API Key [Link to your OpenAI keys](https://platform.openai.com/api-keys).
- If you selected 'No', leave the 'OpenAI Key' field blank and continue with the rest.
- Select a Task from the Dropdown.
- Select a Linguistic Entity from the Dropdown.
- Click 'Submit' to send your inputs to the models.
- To submit a new prompt, repeat all the steps above and click 'Submit' again. Your new prompt should appear on the top of previous ones.
### ⏳ After you click 'Submit', the models will take a couple seconds to process your inputs.
### 🤖 Then, the models will output the POS Tagging or Chunking in your prompt with three different strategies based on your selections!
Note: If you get an 'Error' in the gpt-3.5 model, check the following:
- Check that you entered your key correctly without any extra characters.
- If you used a free key, it means you exceeded your quota from the free API Key.
""")
gr.Markdown("""
### 🛠️ How each Strategy works
- Strategy 1 - QA-Based Prompting
- The model is prompted with a question-answer format. The input consists of a question, and the model generates a response based on the understanding of the question and its knowledge.
- Strategy 2 - Instruction-Based Prompting
- Involves providing the model with explicit instructions on how to generate a response. Instead of relying solely on context or previous knowledge, the instructions guide the model in generating content that aligns with specific criteria.
- Strategy 3 - Structured Prompting
- Involves presenting information to the model in a structured format, often with defined sections or categories. The model then generates responses following the given structure.
""")
# Inputs
task_prompt = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter")
with gr.Row():
have_key = gr.Dropdown(["Yes", "No"], label="Do you own an API Key?", scale=0.5)
task_apikey_input = gr.Textbox(label="Open AI Key", placeholder="Enter your OpenAI key here", type="password", visible=True)
task = gr.Dropdown(["POS Tagging", "Chunking"], label="Task")
task_linguistic_entities = gr.Dropdown(["Noun", "Determiner", "Noun phrase", "Verb phrase", "Dependent clause", "T-units"], label="Linguistic Entity For Strategy 1")
task_btn = gr.Button(value="Submit")
# Outputs
user_prompt_2 = gr.Textbox(label="Original prompt", )
linguistic_features_textbox_2 = gr.Textbox(label="Linguistic Features", disabled=True)
gr.Markdown("### Strategy 1 - QA-Based Prompting")
strategy1 = gr.Markdown("S1", visible=False)
with gr.Row():
gpt_S1_chatbot = gr.Chatbot(label="gpt-3.5")
llama_S1_chatbot = gr.Chatbot(label="llama-7b")
vicuna_S1_chatbot = gr.Chatbot(label="vicuna-7b")
gr.Markdown("### Strategy 2 - Instruction-Based Prompting")
strategy2 = gr.Markdown("S2", visible=False)
with gr.Row():
gpt_S2_chatbot = gr.Chatbot(label="gpt-3.5")
llama_S2_chatbot = gr.Chatbot(label="llama-7b")
vicuna_S2_chatbot = gr.Chatbot(label="vicuna-7b")
gr.Markdown("### Strategy 3 - Structured Prompting")
strategy3 = gr.Markdown("S3", visible=False)
with gr.Row():
gpt_S3_chatbot = gr.Chatbot(label="gpt-3.5")
llama_S3_chatbot = gr.Chatbot(label="llama-7b")
vicuna_S3_chatbot = gr.Chatbot(label="vicuna-7b")
# clear_all = gr.ClearButton(components=[task_prompt, task_apikey_input, have_key, task, task_linguistic_entities,
# vicuna_S1_chatbot, llama_S1_chatbot, gpt_S1_chatbot,
# vicuna_S2_chatbot, llama_S2_chatbot, gpt_S2_chatbot,
# vicuna_S3_chatbot, llama_S3_chatbot, gpt_S3_chatbot])
# Event Handler for API Key
task_btn.click(update_api_key, inputs=task_apikey_input)
# Show user's original prompt
def update_textbox(prompt):
return prompt
task_btn.click(fn=update_textbox, inputs=task_prompt, outputs=user_prompt_2, api_name="task_btn")
# Show features from LFTK
task_btn.click(linguistic_features_fn, inputs=[task_prompt], outputs=[linguistic_features_textbox_2])
# Event Handler for GPT 3.5 Chatbot POS/Chunk, user must submit api key before submitting the prompt
# Will activate after getting API key
# task_apikey_btn.click(update_api_key, inputs=ling_ents_apikey_input)
task_btn.click(gpt_strategies_respond, inputs=[have_key, strategy1, task, task_linguistic_entities, task_prompt, gpt_S1_chatbot],
outputs=[task_prompt, gpt_S1_chatbot])
task_btn.click(gpt_strategies_respond, inputs=[have_key, strategy2, task, task_linguistic_entities, task_prompt, gpt_S2_chatbot],
outputs=[task_prompt, gpt_S2_chatbot])
task_btn.click(gpt_strategies_respond, inputs=[have_key, strategy3, task, task_linguistic_entities, task_prompt, gpt_S3_chatbot],
outputs=[task_prompt, gpt_S3_chatbot])
# Event Handler for LLaMA Chatbot POS/Chunk
task_btn.click(llama_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, task_prompt, llama_S1_chatbot],
outputs=[task, task_prompt, llama_S1_chatbot])
task_btn.click(llama_strategies_respond, inputs=[strategy2, task, task_linguistic_entities, task_prompt, llama_S2_chatbot],
outputs=[task, task_prompt, llama_S2_chatbot])
task_btn.click(llama_strategies_respond, inputs=[strategy3, task, task_linguistic_entities, task_prompt, llama_S3_chatbot],
outputs=[task, task_prompt, llama_S3_chatbot])
# Event Handlers for Vicuna Chatbot POS/Chunk
task_btn.click(vicuna_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, task_prompt, vicuna_S1_chatbot],
outputs=[task, task_prompt, vicuna_S1_chatbot])
task_btn.click(vicuna_strategies_respond, inputs=[strategy2, task, task_linguistic_entities, task_prompt, vicuna_S2_chatbot],
outputs=[task, task_prompt, vicuna_S2_chatbot])
task_btn.click(vicuna_strategies_respond, inputs=[strategy3, task, task_linguistic_entities, task_prompt, vicuna_S3_chatbot],
outputs=[task, task_prompt, vicuna_S3_chatbot])
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# Assessing the Articulate
## A Comparative Analysis of the Core Linguistic Knowledge in Large Language Models
""")
# load interface
interface()
demo.launch()