Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import lftk | |
import spacy | |
import time | |
import os | |
import openai | |
import json | |
# Load the Vicuna 7B model and tokenizer | |
vicuna_tokenizer = AutoTokenizer.from_pretrained("lmsys/vicuna-7b-v1.3") | |
vicuna_model = AutoModelForCausalLM.from_pretrained("lmsys/vicuna-7b-v1.3", load_in_4bit=True) | |
# Load the LLaMA 7b model and tokenizer | |
llama_tokenizer = AutoTokenizer.from_pretrained("daryl149/llama-2-7b-chat-hf") | |
llama_model = AutoModelForCausalLM.from_pretrained("daryl149/llama-2-7b-chat-hf", load_in_4bit=True) | |
os.environ['OPENAI_API_KEY'] | |
openai.api_key = os.environ['OPENAI_API_KEY'] | |
def linguistic_features_fn(message): | |
# Load a trained spaCy pipeline | |
nlp = spacy.load("en_core_web_sm") | |
# Create a spaCy doc object | |
doc = nlp(message) | |
# Initiate LFTK extractor by passing in the doc | |
LFTK = lftk.Extractor(docs=doc) | |
# Customize LFTK extractor (optional) | |
LFTK.customize(stop_words=True, punctuations=False, round_decimal=3) | |
# Use LFTK to dynamically extract handcrafted linguistic features | |
extracted_features = LFTK.extract(features = ["a_word_ps", "a_kup_pw", "n_noun"]) | |
formatted_output = json.dumps(extracted_features, indent=2) | |
print(formatted_output) | |
return formatted_output | |
def chat(user_prompt, model = 'gpt-3.5-turbo', temperature = 0, verbose = False): | |
''' Normal call of OpenAI API ''' | |
response = openai.ChatCompletion.create( | |
temperature = temperature, | |
model = model, | |
messages=[ | |
{"role": "user", "content": user_prompt} | |
]) | |
res = response['choices'][0]['message']['content'] | |
if verbose: | |
print('User prompt:', user_prompt) | |
print('GPT response:', res) | |
return res | |
def format_chat_prompt(message, chat_history, max_convo_length): | |
prompt = "" | |
for turn in chat_history[-max_convo_length:]: | |
user_message, bot_message = turn | |
prompt = f"{prompt}\nUser: {user_message}\nAssistant: {bot_message}" | |
prompt = f"{prompt}\nUser: {message}\nAssistant:" | |
return prompt | |
def gpt_respond(tab_name, message, chat_history, max_convo_length = 10): | |
# if (have_key == "No"): | |
# return "", chat_history | |
formatted_prompt = format_chat_prompt(message, chat_history, max_convo_length) | |
print('GPT ling ents Prompt + Context:') | |
print(formatted_prompt) | |
bot_message = chat(user_prompt = f'''Output any <{tab_name}> in the following sentence one per line: "{formatted_prompt}"''') | |
chat_history.insert(0, (message, bot_message)) | |
return "", chat_history | |
def vicuna_respond(tab_name, message, chat_history): | |
formatted_prompt = f'''Output any {tab_name} in the following sentence one per line: "{message}"''' | |
print('Vicuna Ling Ents Fn - Prompt + Context:') | |
print(formatted_prompt) | |
input_ids = vicuna_tokenizer.encode(formatted_prompt, return_tensors="pt") | |
output_ids = vicuna_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2) | |
bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
print(bot_message) | |
# Remove formatted prompt from bot_message | |
bot_message = bot_message.replace(formatted_prompt, '') | |
print(bot_message) | |
chat_history.insert(0, (formatted_prompt, bot_message)) | |
time.sleep(2) | |
return tab_name, "", chat_history | |
def llama_respond(tab_name, message, chat_history): | |
formatted_prompt = f'''Output any {tab_name} in the following sentence one per line: "{message}"''' | |
# print('Llama - Prompt + Context:') | |
# print(formatted_prompt) | |
input_ids = llama_tokenizer.encode(formatted_prompt, return_tensors="pt") | |
output_ids = llama_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2) | |
bot_message = llama_tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
# Remove formatted prompt from bot_message | |
bot_message = bot_message.replace(formatted_prompt, '') | |
# print(bot_message) | |
chat_history.insert(0, (formatted_prompt, bot_message)) | |
time.sleep(2) | |
return tab_name, "", chat_history | |
def gpt_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history, max_convo_length = 10): | |
# if (have_key == "No"): | |
# return "", chat_history | |
formatted_system_prompt = "" | |
if (task_name == "POS Tagging"): | |
if (strategy == "S1"): | |
formatted_system_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"''' | |
elif (strategy == "S2"): | |
formatted_system_prompt = f'''POS tag the following sentence using Universal POS tag set: "{message}"''' | |
elif (strategy == "S3"): | |
with open('demonstration_3_42_pos.txt', 'r') as f: | |
demon_pos = f.read() | |
formatted_system_prompt = f'''"{demon_pos}". Using the POS tag structure above, POS tag the following sentence: "{message}"''' | |
elif (task_name == "Chunking"): | |
if (strategy == "S1"): | |
formatted_system_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"''' | |
elif (strategy == "S2"): | |
formatted_system_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags: "{message}"''' | |
elif (strategy == "S3"): | |
with open('demonstration_3_42_chunk.txt', 'r') as f: | |
demon_chunk = f.read() | |
formatted_system_prompt = f'''"{demon_chunk}". Using the POS tag structure above, POS tag the following sentence: "{message}"''' | |
formatted_prompt = format_chat_prompt(message, chat_history, max_convo_length) | |
print('GPT coreNLP Prompt + Context:') | |
print(formatted_prompt) | |
bot_message = chat(user_prompt = formatted_system_prompt) | |
chat_history.insert(0, (message, bot_message)) | |
return "", chat_history | |
def vicuna_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history): | |
formatted_prompt = "" | |
if (task_name == "POS Tagging"): | |
if (strategy == "S1"): | |
formatted_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"''' | |
elif (strategy == "S2"): | |
formatted_prompt = f'''POS tag the following sentence using Universal POS tag set: "{message}"''' | |
elif (strategy == "S3"): | |
with open('demonstration_3_42_pos.txt', 'r') as f: | |
demon_pos = f.read() | |
formatted_prompt = f'''"{demon_pos}". Using the POS tag structure above, POS tag the following sentence: "{message}"''' | |
elif (task_name == "Chunking"): | |
if (strategy == "S1"): | |
formatted_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"''' | |
elif (strategy == "S2"): | |
formatted_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags: "{message}"''' | |
elif (strategy == "S3"): | |
with open('demonstration_3_42_chunk.txt', 'r') as f: | |
demon_chunk = f.read() | |
formatted_prompt = f'''"{demon_chunk}". Using the Chunking structure above, Chunk the following sentence: "{message}"''' | |
print('Vicuna Strategy Fn - Prompt + Context:') | |
print(formatted_prompt) | |
input_ids = vicuna_tokenizer.encode(formatted_prompt, return_tensors="pt") | |
output_ids = vicuna_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2) | |
bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
print(bot_message) | |
# Remove formatted prompt from bot_message | |
bot_message = bot_message.replace(formatted_prompt, '') | |
print(bot_message) | |
chat_history.insert(0, (formatted_prompt, bot_message)) | |
time.sleep(2) | |
return task_name, "", chat_history | |
def llama_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history): | |
formatted_prompt = "" | |
if (task_name == "POS Tagging"): | |
if (strategy == "S1"): | |
formatted_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"''' | |
elif (strategy == "S2"): | |
formatted_prompt = f'''POS tag the following sentence using Universal POS tag set: "{message}"''' | |
elif (strategy == "S3"): | |
with open('demonstration_3_42_pos.txt', 'r') as f: | |
demon_pos = f.read() | |
formatted_prompt = f'''"{demon_pos}". Using the POS tag structure above, POS tag the following sentence: "{message}"''' | |
elif (task_name == "Chunking"): | |
if (strategy == "S1"): | |
formatted_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"''' | |
elif (strategy == "S2"): | |
formatted_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags: "{message}"''' | |
elif (strategy == "S3"): | |
with open('demonstration_3_42_chunk.txt', 'r') as f: | |
demon_chunk = f.read() | |
formatted_prompt = f'''"{demon_chunk}". Using the Chunking structure above, Chunk the following sentence: "{message}"''' | |
print('Llama Strategies - Prompt + Context:') | |
print(formatted_prompt) | |
input_ids = llama_tokenizer.encode(formatted_prompt, return_tensors="pt") | |
output_ids = llama_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2) | |
bot_message = llama_tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
print(bot_message) | |
# Remove formatted prompt from bot_message | |
bot_message = bot_message.replace(formatted_prompt, '') | |
print(bot_message) | |
chat_history.insert(0, (formatted_prompt, bot_message)) | |
time.sleep(2) | |
return task_name, "", chat_history | |
def interface(): | |
with gr.Tab("Linguistic Entities"): | |
with gr.Row(): | |
gr.Markdown(""" | |
## π Step-By-Step Instructions | |
- Enter a sentence for three models to process (Vicuna-7b, LLaMA-7b and GPT-3.5). | |
- Select a Linguistic Entity from the Dropdown or enter a custom one. | |
- Click 'Submit' to send your inputs to the models. | |
- To submit a new prompt, repeat all the steps above and click 'Submit' again. Your new prompt should appear on the top of previous ones. | |
### β³ After you click 'Submit', the models will take a couple seconds to process your inputs. | |
### π€ Then, the models will output the linguistic entity found in your prompt based on your selection! | |
""") | |
gr.Markdown(""" | |
### π Linguistic Complexity | |
- We use existing tool, [LFTK](https://github.com/brucewlee/lftk?tab=readme-ov-file), to estimate the liguistic complexity of input sentences. | |
- For more information regarding the meanings of each feature keyword, please reference their documentation [here](https://docs.google.com/spreadsheets/d/1uXtQ1ah0OL9cmHp2Hey0QcHb4bifJcQFLvYlVIAWWwQ/edit#gid=693915416). | |
""") | |
# Inputs | |
ling_ents_prompt = gr.Textbox(show_label=False, placeholder="Write a prompt here") | |
# with gr.Row(): | |
# # Will activate after getting API key | |
# have_key2 = gr.Dropdown(["Yes", "No"], label="Do you own an API Key?", scale=0.5) | |
# ling_ents_apikey_input = gr.Textbox(label="Open AI Key", placeholder="Enter your OpenAI key here", type="password") | |
linguistic_entities = gr.Dropdown(["Noun", "Determiner", "Noun phrase", "Verb phrase", "Dependent clause", "T-units"], label="Linguistic Entity", allow_custom_value=True, info="If your choice is not included in the options, please type your own.") | |
ling_ents_btn = gr.Button(value="Submit") | |
# Outputs | |
user_prompt_1 = gr.Textbox(label="Original prompt") | |
# Linguistic Complexities | |
linguistic_features_textbox = gr.Textbox(label="Linguistic Complexity", disabled=True) | |
gr.Markdown(" Definitions for the complexity indices can be found [here](https://docs.google.com/spreadsheets/d/1uXtQ1ah0OL9cmHp2Hey0QcHb4bifJcQFLvYlVIAWWwQ/edit#gid=693915416).") | |
with gr.Row(): | |
gpt_ling_ents_chatbot = gr.Chatbot(label="gpt-3.5") | |
llama_ling_ents_chatbot = gr.Chatbot(label="llama-7b") | |
vicuna_ling_ents_chatbot = gr.Chatbot(label="vicuna-7b") | |
# clear = gr.ClearButton(components=[ling_ents_prompt, ling_ents_apikey_input, have_key2, linguistic_entities, | |
# vicuna_ling_ents_chatbot, llama_ling_ents_chatbot, gpt_ling_ents_chatbot,]) | |
# Event Handler for API Key | |
# ling_ents_btn.click(update_api_key, inputs=ling_ents_apikey_input) | |
def update_textbox(prompt): | |
return prompt | |
ling_ents_btn.click(fn=update_textbox, inputs=ling_ents_prompt, outputs=user_prompt_1, api_name="ling_ents_btn") | |
# Show features from LFTK | |
ling_ents_btn.click(linguistic_features_fn, inputs=[ling_ents_prompt], outputs=[linguistic_features_textbox]) | |
# Event Handler for GPT 3.5 Chatbot | |
ling_ents_btn.click(gpt_respond, inputs=[linguistic_entities, ling_ents_prompt, gpt_ling_ents_chatbot], | |
outputs=[ling_ents_prompt, gpt_ling_ents_chatbot]) | |
# Event Handler for LLaMA Chatbot | |
ling_ents_btn.click(llama_respond, inputs=[linguistic_entities, ling_ents_prompt, llama_ling_ents_chatbot], | |
outputs=[linguistic_entities, ling_ents_prompt, llama_ling_ents_chatbot]) | |
# Event Handler for Vicuna Chatbot | |
ling_ents_btn.click(vicuna_respond, inputs=[linguistic_entities, ling_ents_prompt, vicuna_ling_ents_chatbot], | |
outputs=[linguistic_entities, ling_ents_prompt, vicuna_ling_ents_chatbot]) | |
with gr.Tab("CoreNLP"): | |
with gr.Row(): | |
gr.Markdown(""" | |
## π Step-By-Step Instructions | |
- Enter a sentence for three models to process (Vicuna-7b, LLaMA-7b and GPT-3.5). | |
- Select a Task from the Dropdown. | |
- Select a Linguistic Entity from the Dropdown or enter a custom one. | |
- Click 'Submit' to send your inputs to the models. | |
- To submit a new prompt, repeat all the steps above and click 'Submit' again. Your new prompt should appear on the top of previous ones. | |
### β³ After you click 'Submit', the models will take a couple seconds to process your inputs. | |
### π€ Then, the models will output the POS Tagging or Chunking in your prompt with three different strategies based on your selections! | |
""") | |
with gr.Column(): | |
gr.Markdown(""" | |
### π Linguistic Complexity | |
- We use existing tool, [LFTK](https://github.com/brucewlee/lftk?tab=readme-ov-file), to estimate the liguistic complexity of input sentences. | |
- For more information regarding the meanings of each feature keyword, please reference their documentation [here](https://docs.google.com/spreadsheets/d/1uXtQ1ah0OL9cmHp2Hey0QcHb4bifJcQFLvYlVIAWWwQ/edit#gid=693915416). | |
""") | |
gr.Markdown(""" | |
### π οΈ How each Strategy works | |
- Strategy 1 - QA-Based Prompting | |
- The model is prompted with a question-answer format. The input consists of a question, and the model generates a response based on the understanding of the question and its knowledge. | |
- Strategy 2 - Instruction-Based Prompting | |
- Involves providing the model with explicit instructions on how to generate a response. Instead of relying solely on context or previous knowledge, the instructions guide the model in generating content that aligns with specific criteria. | |
- Strategy 3 - Structured Prompting | |
- Involves presenting information to the model in a structured format, often with defined sections or categories. The model then generates responses following the given structure. | |
""") | |
# Inputs | |
task_prompt = gr.Textbox(show_label=False, placeholder="Write a prompt here") | |
# with gr.Row(): | |
# have_key = gr.Dropdown(["Yes", "No"], label="Do you own an API Key?", scale=0.5) | |
# task_apikey_input = gr.Textbox(label="Open AI Key", placeholder="Enter your OpenAI key here", type="password", visible=True) | |
task = gr.Dropdown(["POS Tagging", "Chunking"], label="Task") | |
task_linguistic_entities = gr.Dropdown(["Noun", "Determiner", "Noun phrase", "Verb phrase", "Dependent clause", "T-units"], label="Linguistic Entity For Strategy 1", allow_custom_value=True, info="If your choice is not included in the options, please type your own.") | |
task_btn = gr.Button(value="Submit") | |
# Outputs | |
user_prompt_2 = gr.Textbox(label="Original prompt", ) | |
# Linguistic Complexity | |
linguistic_features_textbox_2 = gr.Textbox(label="Linguistic Complexity", disabled=True) | |
gr.Markdown(" Definitions for the complexity indices can be found [here](https://docs.google.com/spreadsheets/d/1uXtQ1ah0OL9cmHp2Hey0QcHb4bifJcQFLvYlVIAWWwQ/edit#gid=693915416).") | |
gr.Markdown("### Strategy 1 - QA-Based Prompting") | |
strategy1 = gr.Markdown("S1", visible=False) | |
with gr.Row(): | |
gpt_S1_chatbot = gr.Chatbot(label="gpt-3.5") | |
llama_S1_chatbot = gr.Chatbot(label="llama-7b") | |
vicuna_S1_chatbot = gr.Chatbot(label="vicuna-7b") | |
gr.Markdown("### Strategy 2 - Instruction-Based Prompting") | |
strategy2 = gr.Markdown("S2", visible=False) | |
with gr.Row(): | |
gpt_S2_chatbot = gr.Chatbot(label="gpt-3.5") | |
llama_S2_chatbot = gr.Chatbot(label="llama-7b") | |
vicuna_S2_chatbot = gr.Chatbot(label="vicuna-7b") | |
gr.Markdown("### Strategy 3 - Structured Prompting") | |
strategy3 = gr.Markdown("S3", visible=False) | |
with gr.Row(): | |
gpt_S3_chatbot = gr.Chatbot(label="gpt-3.5") | |
llama_S3_chatbot = gr.Chatbot(label="llama-7b") | |
vicuna_S3_chatbot = gr.Chatbot(label="vicuna-7b") | |
# clear_all = gr.ClearButton(components=[task_prompt, task_apikey_input, have_key, task, task_linguistic_entities, | |
# vicuna_S1_chatbot, llama_S1_chatbot, gpt_S1_chatbot, | |
# vicuna_S2_chatbot, llama_S2_chatbot, gpt_S2_chatbot, | |
# vicuna_S3_chatbot, llama_S3_chatbot, gpt_S3_chatbot]) | |
# Event Handler for API Key | |
# task_btn.click(update_api_key, inputs=task_apikey_input) | |
# Show user's original prompt | |
def update_textbox(prompt): | |
return prompt | |
task_btn.click(fn=update_textbox, inputs=task_prompt, outputs=user_prompt_2, api_name="task_btn") | |
# Show features from LFTK | |
task_btn.click(linguistic_features_fn, inputs=[task_prompt], outputs=[linguistic_features_textbox_2]) | |
# Event Handler for GPT 3.5 Chatbot POS/Chunk, user must submit api key before submitting the prompt | |
# Will activate after getting API key | |
# task_apikey_btn.click(update_api_key, inputs=ling_ents_apikey_input) | |
task_btn.click(gpt_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, task_prompt, gpt_S1_chatbot], | |
outputs=[task_prompt, gpt_S1_chatbot]) | |
task_btn.click(gpt_strategies_respond, inputs=[strategy2, task, task_linguistic_entities, task_prompt, gpt_S2_chatbot], | |
outputs=[task_prompt, gpt_S2_chatbot]) | |
task_btn.click(gpt_strategies_respond, inputs=[strategy3, task, task_linguistic_entities, task_prompt, gpt_S3_chatbot], | |
outputs=[task_prompt, gpt_S3_chatbot]) | |
# Event Handler for LLaMA Chatbot POS/Chunk | |
task_btn.click(llama_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, task_prompt, llama_S1_chatbot], | |
outputs=[task, task_prompt, llama_S1_chatbot]) | |
task_btn.click(llama_strategies_respond, inputs=[strategy2, task, task_linguistic_entities, task_prompt, llama_S2_chatbot], | |
outputs=[task, task_prompt, llama_S2_chatbot]) | |
task_btn.click(llama_strategies_respond, inputs=[strategy3, task, task_linguistic_entities, task_prompt, llama_S3_chatbot], | |
outputs=[task, task_prompt, llama_S3_chatbot]) | |
# Event Handlers for Vicuna Chatbot POS/Chunk | |
task_btn.click(vicuna_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, task_prompt, vicuna_S1_chatbot], | |
outputs=[task, task_prompt, vicuna_S1_chatbot]) | |
task_btn.click(vicuna_strategies_respond, inputs=[strategy2, task, task_linguistic_entities, task_prompt, vicuna_S2_chatbot], | |
outputs=[task, task_prompt, vicuna_S2_chatbot]) | |
task_btn.click(vicuna_strategies_respond, inputs=[strategy3, task, task_linguistic_entities, task_prompt, vicuna_S3_chatbot], | |
outputs=[task, task_prompt, vicuna_S3_chatbot]) | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown(""" | |
# LingEval | |
## A Comparative Analysis of the Core Linguistic Knowledge in Large Language Models | |
""") | |
# load interface | |
interface() | |
demo.launch() | |