LingEval / app.py
research14's picture
testing lftk
cd1760d
raw
history blame
7.96 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import lftk
import spacy
import time
import os
import openai
# Load the Vicuna 7B model and tokenizer
vicuna_tokenizer = AutoTokenizer.from_pretrained("lmsys/vicuna-7b-v1.3")
vicuna_model = AutoModelForCausalLM.from_pretrained("lmsys/vicuna-7b-v1.3")
# Load the LLaMA 7b model and tokenizer
llama_tokenizer = AutoTokenizer.from_pretrained("daryl149/llama-2-7b-chat-hf")
llama_model = AutoModelForCausalLM.from_pretrained("daryl149/llama-2-7b-chat-hf")
template_single = '''Please output any <{}> in the following sentence one per line without any additional text: "{}"'''
def linguistic_features(message):
# Load a trained spaCy pipeline
nlp = spacy.load("en_core_web_sm")
# Create a spaCy doc object
doc = nlp(message)
# Initiate LFTK extractor by passing in the doc
LFTK_extractor = lftk.Extractor(docs=doc)
# Customize LFTK extractor (optional)
LFTK_extractor.customize(stop_words=True, punctuations=False, round_decimal=3)
# Use LFTK to dynamically extract handcrafted linguistic features
features_to_extract = lftk.search_features(family="wordsent", language="general", return_format="list_key")
extracted_features = LFTK_extractor.extract(features=features_to_extract)
print('Linguistic Features:', extracted_features)
return extracted_features
def update_api_key(new_key):
global api_key
os.environ['OPENAI_API_TOKEN'] = new_key
openai.api_key = os.environ['OPENAI_API_TOKEN']
def chat(system_prompt, user_prompt, model = 'gpt-3.5-turbo', temperature = 0, verbose = False):
''' Normal call of OpenAI API '''
response = openai.ChatCompletion.create(
temperature = temperature,
model=model,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
])
res = response['choices'][0]['message']['content']
if verbose:
print('System prompt:', system_prompt)
print('User prompt:', user_prompt)
print('GPT response:', res)
return res
def format_chat_prompt(message, chat_history, max_convo_length):
prompt = ""
for turn in chat_history[-max_convo_length:]:
user_message, bot_message = turn
prompt = f"{prompt}\nUser: {user_message}\nAssistant: {bot_message}"
prompt = f"{prompt}\nUser: {message}\nAssistant:"
return prompt
def gpt_respond(tab_name, message, chat_history, max_convo_length = 10):
formatted_prompt = format_chat_prompt(message, chat_history, max_convo_length)
print('Prompt + Context:')
print(formatted_prompt)
bot_message = chat(system_prompt = f'''Generate the output only for the assistant. Please output any <{tab_name}> in the following sentence one per line without any additional text.''',
user_prompt = formatted_prompt)
chat_history.append((message, bot_message))
return "", chat_history
def vicuna_respond(tab_name, message, chat_history, linguistic_features):
formatted_prompt = f'''Generate the output only for the assistant. Please output any {tab_name} in the following sentence one per line without any additional text: {message}'''
print('Vicuna - Prompt + Context:')
print(formatted_prompt)
input_ids = vicuna_tokenizer.encode(formatted_prompt, return_tensors="pt")
output_ids = vicuna_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(bot_message)
# Remove formatted prompt from bot_message
bot_message = bot_message.replace(formatted_prompt, '')
print(bot_message)
chat_history.append((formatted_prompt, bot_message))
time.sleep(2)
return tab_name, "", chat_history
def llama_respond(tab_name, message, chat_history, linguistic_features):
formatted_prompt = f'''Generate the output only for the assistant. Please output any {tab_name} in the following sentence one per line without any additional text: {message}'''
print('Llama - Prompt + Context:')
print(formatted_prompt)
input_ids = llama_tokenizer.encode(formatted_prompt, return_tensors="pt")
output_ids = llama_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
bot_message = llama_tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Remove formatted prompt from bot_message
bot_message = bot_message.replace(formatted_prompt, '')
print(bot_message)
chat_history.append((formatted_prompt, bot_message))
time.sleep(2)
return tab_name, "", chat_history
def interface():
gr.Markdown(" Description ")
textbox_prompt = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter")
with gr.Row():
api_key_input = gr.Textbox(label="Open AI Key", placeholder="Enter your Openai key here", type="password")
api_key_btn = gr.Button(value="Submit Key", scale=0)
tab_name = gr.Dropdown(["Noun", "Determiner", "Noun phrase", "Verb phrase", "Dependent clause", "T-units"], label="Linguistic Entity")
btn = gr.Button(value="Submit")
# prompt = template_single.format(tab_name, textbox_prompt)
gr.Markdown("Strategy 1 QA-Based Prompting")
linguistic_features_textbox = gr.Textbox(label="Linguistic Features", disabled=True)
with gr.Row():
vicuna_S1_chatbot = gr.Chatbot(label="vicuna-7b")
llama_S1_chatbot = gr.Chatbot(label="llama-7b")
gpt_S1_chatbot = gr.Chatbot(label="gpt-3.5")
clear = gr.ClearButton(components=[textbox_prompt, api_key_input, vicuna_S1_chatbot, llama_S1_chatbot, gpt_S1_chatbot])
# gr.Markdown("Strategy 2 Instruction-Based Prompting")
# with gr.Row():
# vicuna_S2_chatbot = gr.Chatbot(label="vicuna-7b")
# llama_S2_chatbot = gr.Chatbot(label="llama-7b")
# gpt_S2_chatbot = gr.Chatbot(label="gpt-3.5")
# clear = gr.ClearButton(components=[textbox_prompt, vicuna_S2_chatbot])
# gr.Markdown("Strategy 3 Structured Prompting")
# with gr.Row():
# vicuna_S3_chatbot = gr.Chatbot(label="vicuna-7b")
# llama_S3_chatbot = gr.Chatbot(label="llama-7b")
# gpt_S3_chatbot = gr.Chatbot(label="gpt-3.5")
# clear = gr.ClearButton(components=[textbox_prompt, vicuna_S3_chatbot])
#textbox_prompt.submit(vicuna_respond, inputs=[textbox_prompt, vicuna_S1_chatbot], outputs=[textbox_prompt, vicuna_S1_chatbot])
# textbox_prompt.submit(respond, inputs=[textbox_prompt, vicuna_S2_chatbot], outputs=[textbox_prompt, vicuna_S2_chatbot])
# textbox_prompt.submit(respond, inputs=[textbox_prompt, vicuna_S3_chatbot], outputs=[textbox_prompt, vicuna_S3_chatbot])
#textbox_prompt.submit(llama_respond, inputs=[textbox_prompt, llama_S1_chatbot], outputs=[textbox_prompt, llama_S1_chatbot])
btn.click(lambda _,
message=textbox_prompt: linguistic_features_textbox.update(linguistic_features(textbox_prompt)),
inputs=[textbox_prompt],
outputs=[linguistic_features_textbox])
btn.click(vicuna_respond, inputs=[tab_name, textbox_prompt, vicuna_S1_chatbot],
outputs=[tab_name, textbox_prompt, vicuna_S1_chatbot])
btn.click(llama_respond, inputs=[tab_name, textbox_prompt, llama_S1_chatbot],
outputs=[tab_name, textbox_prompt, llama_S1_chatbot])
#api_key_btn.click(update_api_key, inputs=api_key_input)
#btn.click(gpt_respond, inputs=[tab_name, textbox_prompt, gpt_S1_chatbot], outputs=[tab_name, textbox_prompt, gpt_S1_chatbot])
with gr.Blocks() as demo:
gr.Markdown("# LLM Evaluator With Linguistic Scrutiny")
interface()
demo.launch()