Spaces:
Sleeping
Sleeping
research14
commited on
Commit
•
ac4f141
1
Parent(s):
1d66b8b
test new interface
Browse files- app.py +71 -43
- run_llm2.py +58 -379
app.py
CHANGED
@@ -17,6 +17,8 @@ from nltk.tag.mapping import _UNIVERSAL_TAGS
|
|
17 |
import gradio as gr
|
18 |
from transformers import pipeline
|
19 |
|
|
|
|
|
20 |
uni_tags = list(_UNIVERSAL_TAGS)
|
21 |
uni_tags[-1] = 'PUNC'
|
22 |
|
@@ -98,50 +100,76 @@ task_options = ['POS', 'Chunking'] # remove parsing
|
|
98 |
|
99 |
|
100 |
# Function to process text based on model and task
|
101 |
-
def process_text(
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
result1 = gpt_pipeline(strategy1_format)[0]['generated_text']
|
123 |
-
result2 = gpt_pipeline(strategy2_format)[0]['generated_text']
|
124 |
-
result3 = gpt_pipeline(strategy3_format)[0]['generated_text']
|
125 |
-
return (result1, result2, result3)
|
126 |
|
127 |
# Gradio interface
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
gr.
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
)
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
|
|
147 |
|
|
|
17 |
import gradio as gr
|
18 |
from transformers import pipeline
|
19 |
|
20 |
+
demo = gr.Blocks()
|
21 |
+
|
22 |
uni_tags = list(_UNIVERSAL_TAGS)
|
23 |
uni_tags[-1] = 'PUNC'
|
24 |
|
|
|
100 |
|
101 |
|
102 |
# Function to process text based on model and task
|
103 |
+
def process_text(tab, text):
|
104 |
+
if tab == 'POS Tab':
|
105 |
+
strategy1_format = template_all.format(text)
|
106 |
+
strategy2_format = prompt2_pos.format(text)
|
107 |
+
strategy3_format = demon_pos
|
108 |
+
|
109 |
+
vicuna_result1 = gpt_pipeline(strategy1_format)[0]['generated_text']
|
110 |
+
vicuna_result2 = gpt_pipeline(strategy2_format)[0]['generated_text']
|
111 |
+
vicuna_result3 = gpt_pipeline(strategy3_format)[0]['generated_text']
|
112 |
+
|
113 |
+
return (vicuna_result1, vicuna_result2, vicuna_result3)
|
114 |
+
elif tab == 'Chunk Tab':
|
115 |
+
strategy1_format = template_all.format(text)
|
116 |
+
strategy2_format = prompt2_chunk.format(text)
|
117 |
+
strategy3_format = demon_chunk
|
118 |
+
|
119 |
+
result1 = gpt_pipeline(strategy1_format)[0]['generated_text']
|
120 |
+
result2 = gpt_pipeline(strategy2_format)[0]['generated_text']
|
121 |
+
result3 = gpt_pipeline(strategy3_format)[0]['generated_text']
|
122 |
+
return (result1, result2, result3)
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
# Gradio interface
|
125 |
+
with demo:
|
126 |
+
gr.Markdown("# LLM Evaluator With Linguistic Scrutiny")
|
127 |
+
|
128 |
+
with gr.Tabs():
|
129 |
+
with gr.TabItem("POS", id="POS Tab"):
|
130 |
+
with gr.Row():
|
131 |
+
gr.Markdown("<center>Vicuna 7b</center>")
|
132 |
+
gr.Markdown("<center> LLaMA-7b </center>")
|
133 |
+
gr.Markdown("<center> GPT 3.5 </center>")
|
134 |
+
with gr.Row():
|
135 |
+
model1_S1_output = gr.Textbox(label="Strategy 1 QA")
|
136 |
+
model2_S1_output = gr.Textbox(label=".")
|
137 |
+
model3_S1_output = gr.Textbox(label=".")
|
138 |
+
with gr.Row():
|
139 |
+
model1_S2_output = gr.Textbox(label="Strategy 2 Instruction")
|
140 |
+
model2_S2_output = gr.Textbox(label=".")
|
141 |
+
model3_S2_output = gr.Textbox(label=".")
|
142 |
+
with gr.Row():
|
143 |
+
model1_S3_output = gr.Textbox(label="Strategy 3 Structured Prompting")
|
144 |
+
model2_S3_output = gr.Textbox(label=".")
|
145 |
+
model3_S3_output = gr.Textbox(label=".")
|
146 |
+
with gr.Row():
|
147 |
+
prompt = gr.Textbox(show_label=False, placeholder="Enter prompt")
|
148 |
+
send_button_POS = gr.Button("Send", scale=0)
|
149 |
+
|
150 |
+
with gr.TabItem("Chunking", id="Chunk Tab"):
|
151 |
+
with gr.Row():
|
152 |
+
gr.Markdown("<center>Vicuna 7b</center>")
|
153 |
+
gr.Markdown("<center> LLaMA-7b </center>")
|
154 |
+
gr.Markdown("<center> GPT 3.5 </center>")
|
155 |
+
with gr.Row():
|
156 |
+
model1_S1_output = gr.Textbox(label="Strategy 1 QA")
|
157 |
+
model2_S1_output = gr.Textbox(label=".")
|
158 |
+
model3_S1_output = gr.Textbox(label=".")
|
159 |
+
with gr.Row():
|
160 |
+
model1_S2_output = gr.Textbox(label="Strategy 2 Instruction")
|
161 |
+
model2_S2_output = gr.Textbox(label=".")
|
162 |
+
model3_S2_output = gr.Textbox(label=".")
|
163 |
+
with gr.Row():
|
164 |
+
model1_S3_output = gr.Textbox(label="Strategy 3 Structured Prompting")
|
165 |
+
model2_S3_output = gr.Textbox(label=".")
|
166 |
+
model3_S3_output = gr.Textbox(label=".")
|
167 |
+
with gr.Row():
|
168 |
+
prompt = gr.Textbox(show_label=False, placeholder="Enter prompt")
|
169 |
+
send_button_Chunk = gr.Button("Send", scale=0)
|
170 |
+
|
171 |
+
send_button_POS.click(process_text, inputs=["POS Tab", prompt], outputs=[model1_S1_output, model1_S1_output, model1_S1_output])
|
172 |
+
send_button_Chunk.click(process_text, inputs=["Chunk Tab", prompt], outputs=[model1_S1_output, model1_S1_output, model1_S1_output])
|
173 |
|
174 |
+
demo.launch()
|
175 |
|
run_llm2.py
CHANGED
@@ -15,6 +15,7 @@ from fastchat.model import load_model, get_conversation_template, add_model_args
|
|
15 |
from nltk.tag.mapping import _UNIVERSAL_TAGS
|
16 |
|
17 |
import gradio as gr
|
|
|
18 |
|
19 |
uni_tags = list(_UNIVERSAL_TAGS)
|
20 |
uni_tags[-1] = 'PUNC'
|
@@ -26,8 +27,7 @@ syntags = ['NP', 'S', 'VP', 'ADJP', 'ADVP', 'SBAR', 'TOP', 'PP', 'POS', 'NAC', "
|
|
26 |
'WHADVP', 'NX', 'PRT', 'VBZ', 'VBP', 'MD', 'NN', 'WHPP', 'SQ', 'SBARQ', 'LST', 'INTJ', 'X', 'UCP', 'CONJP', 'NNP', 'CD', 'JJ',
|
27 |
'VBD', 'WHADJP', 'PRP', 'RRC', 'NNS', 'SYM', 'CC']
|
28 |
|
29 |
-
openai.api_key = "
|
30 |
-
|
31 |
|
32 |
# determinant vs. determiner
|
33 |
# https://wikidiff.com/determiner/determinant
|
@@ -48,51 +48,17 @@ ents_prompt = ents_prompt_uni_tags + ents_prompt
|
|
48 |
|
49 |
for i, j in zip(ents, ents_prompt):
|
50 |
print(i, j)
|
51 |
-
# raise
|
52 |
-
|
53 |
|
54 |
model_mapping = {
|
55 |
-
|
56 |
-
'
|
57 |
-
'
|
58 |
-
'vicuna-13b': 'lmsys/vicuna-13b-v1.3',
|
59 |
-
'vicuna-33b': 'lmsys/vicuna-33b-v1.3',
|
60 |
-
'fastchat-t5': 'lmsys/fastchat-t5-3b-v1.0',
|
61 |
-
# 'llama2-7b': 'meta-llama/Llama-2-7b-hf',
|
62 |
-
# 'llama2-13b': 'meta-llama/Llama-2-13b-hf',
|
63 |
-
# 'llama2-70b': 'meta-llama/Llama-2-70b-hf',
|
64 |
-
'llama-7b': './llama/hf/7B',
|
65 |
-
'llama-13b': './llama/hf/13B',
|
66 |
-
'llama-30b': './llama/hf/30B',
|
67 |
-
# 'llama-65b': './llama/hf/65B',
|
68 |
-
'alpaca': './alpaca-7B',
|
69 |
-
# 'koala-7b': 'koala-7b',
|
70 |
-
# 'koala-13b': 'koala-13b',
|
71 |
}
|
72 |
|
73 |
-
for m in model_mapping.keys():
|
74 |
-
for eid, ent in enumerate(ents):
|
75 |
-
os.makedirs(f'result/prompt1_qa/{m}/ptb/per_ent/{ent}', exist_ok=True)
|
76 |
-
|
77 |
-
os.makedirs(f'result/prompt2_instruction/pos_tagging/{m}/ptb', exist_ok=True)
|
78 |
-
os.makedirs(f'result/prompt2_instruction/chunking/{m}/ptb', exist_ok=True)
|
79 |
-
os.makedirs(f'result/prompt2_instruction/parsing/{m}/ptb', exist_ok=True)
|
80 |
-
|
81 |
-
os.makedirs(f'result/prompt3_structured_prompt/pos_tagging/{m}/ptb', exist_ok=True)
|
82 |
-
os.makedirs(f'result/prompt3_structured_prompt/chunking/{m}/ptb', exist_ok=True)
|
83 |
-
os.makedirs(f'result/prompt3_structured_prompt/parsing/{m}/ptb', exist_ok=True)
|
84 |
-
|
85 |
-
|
86 |
-
#s = int(sys.argv[1])
|
87 |
-
#e = int(sys.argv[2])
|
88 |
-
|
89 |
-
#s = 0
|
90 |
-
#e = 1000
|
91 |
with open('sample_uniform_1k_2.txt', 'r') as f:
|
92 |
selected_idx = f.readlines()
|
93 |
selected_idx = [int(i.strip()) for i in selected_idx]#[s:e]
|
94 |
|
95 |
-
|
96 |
ptb = []
|
97 |
with open('ptb.jsonl', 'r') as f:
|
98 |
for l in f:
|
@@ -118,351 +84,64 @@ with open('demonstration_3_42_chunk.txt', 'r') as f:
|
|
118 |
with open('demonstration_3_42_parse.txt', 'r') as f:
|
119 |
demon_parse = f.read()
|
120 |
|
|
|
|
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
return c
|
127 |
-
|
128 |
-
def main(args=None):
|
129 |
|
130 |
-
|
|
|
|
|
131 |
|
132 |
|
133 |
-
|
134 |
-
|
|
|
135 |
|
136 |
-
|
137 |
-
path = model_mapping[args.model_path]
|
138 |
-
model, tokenizer = load_model(
|
139 |
-
path,
|
140 |
-
args.device,
|
141 |
-
args.num_gpus,
|
142 |
-
args.max_gpu_memory,
|
143 |
-
args.load_8bit,
|
144 |
-
args.cpu_offloading,
|
145 |
-
revision=args.revision,
|
146 |
-
debug=args.debug,
|
147 |
-
)
|
148 |
-
|
149 |
-
whitelist_ids_pos = [tokenizer.encode(word)[1] for word in uni_tags]
|
150 |
-
bad_words_ids_pos = [[ids] for ids in range(tokenizer.vocab_size) if ids not in whitelist_ids_pos]
|
151 |
-
|
152 |
-
whitelist_ids_bio = [tokenizer.encode(word)[1] for word in bio_tags]
|
153 |
-
bad_words_ids_bio = [[ids] for ids in range(tokenizer.vocab_size) if ids not in whitelist_ids_bio]
|
154 |
-
|
155 |
-
whitelist_ids_chunk = [tokenizer.encode(word)[1] for word in chunk_tags]
|
156 |
-
bad_words_ids_chunk = [[ids] for ids in range(tokenizer.vocab_size) if ids not in whitelist_ids_chunk]
|
157 |
-
|
158 |
-
whitelist_ids_parse = [tokenizer.encode(word)[1] for word in syntags]
|
159 |
-
bad_words_ids_parse = [[ids] for ids in range(tokenizer.vocab_size) if ids not in whitelist_ids_parse]
|
160 |
-
|
161 |
-
|
162 |
-
if args.prompt == 1:
|
163 |
-
for gid in tqdm(gid_list, desc='Query'):
|
164 |
text = ptb[gid]['text']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
-
for eid, ent in enumerate(ents):
|
167 |
-
os.makedirs(f'result/prompt1_qa/{args.model_path}/ptb/per_ent/{ent}', exist_ok=True)
|
168 |
-
|
169 |
-
if ent == 'NOUN' and not os.path.exists(f'result/prompt1_qa/{args.model_path}/ptb/per_ent/NOUN'):
|
170 |
-
os.system(f'ln -sT ./NN result/prompt1_qa/{args.model_path}/ptb/per_ent/NOUN')
|
171 |
-
if ent == 'VERB' and not os.path.exists(f'result/prompt1_qa/{args.model_path}/ptb/per_ent/VERB'):
|
172 |
-
os.system(f'ln -sT ./VB result/prompt1_qa/{args.model_path}/ptb/per_ent/VERB')
|
173 |
-
if ent == 'ADJ' and not os.path.exists(f'result/prompt1_qa/{args.model_path}/ptb/per_ent/ADJ'):
|
174 |
-
os.system(f'ln -sT ./JJ result/prompt1_qa/{args.model_path}/ptb/per_ent/ADJ')
|
175 |
-
if ent == 'ADV' and not os.path.exists(f'result/prompt1_qa/{args.model_path}/ptb/per_ent/ADV'):
|
176 |
-
os.system(f'ln -sT ./RB result/prompt1_qa/{args.model_path}/ptb/per_ent/ADV')
|
177 |
-
if ent == 'CONJ' and not os.path.exists(f'result/prompt1_qa/{args.model_path}/ptb/per_ent/CONJ'):
|
178 |
-
os.system(f'ln -sT ./CC result/prompt1_qa/{args.model_path}/ptb/per_ent/CONJ')
|
179 |
-
if ent == 'DET' and not os.path.exists(f'result/prompt1_qa/{args.model_path}/ptb/per_ent/DET'):
|
180 |
-
os.system(f'ln -sT ./DT result/prompt1_qa/{args.model_path}/ptb/per_ent/DET')
|
181 |
-
if ent == 'ADP' and not os.path.exists(f'result/prompt1_qa/{args.model_path}/ptb/per_ent/ADP'):
|
182 |
-
os.system(f'ln -sT ./DT result/prompt1_qa/{args.model_path}/ptb/per_ent/IN')
|
183 |
-
|
184 |
-
if os.path.exists(f'result/prompt1_qa/{args.model_path}/ptb/per_ent/{ent}/{gid}.txt'):
|
185 |
-
print(gid, ent, 'skip')
|
186 |
-
continue
|
187 |
-
|
188 |
-
|
189 |
-
## Get prompt
|
190 |
-
msg = template_single.format(ents_prompt[eid], text)
|
191 |
-
|
192 |
-
## Run
|
193 |
-
if 'gpt3' in args.model_path:
|
194 |
-
if os.path.exists(f'result/prompt1_qa/{args.model_path}/ptb/per_ent/{ent}/{gid}.pkl'):
|
195 |
-
print('Found cache')
|
196 |
-
with open(f'result/prompt1_qa/{args.model_path}/ptb/per_ent/{ent}/{gid}.pkl', 'rb') as f:
|
197 |
-
outputs = pickle.load(f)
|
198 |
-
outputs = outputs['choices'][0]['message']['content']
|
199 |
-
else:
|
200 |
-
outputs = gpt3(msg)
|
201 |
-
if outputs is None:
|
202 |
-
continue
|
203 |
-
time.sleep(0.2)
|
204 |
-
|
205 |
-
else:
|
206 |
-
conv = get_conversation_template(args.model_path)
|
207 |
-
conv.append_message(conv.roles[0], msg)
|
208 |
-
conv.append_message(conv.roles[1], None)
|
209 |
-
conv.system = ''
|
210 |
-
prompt = conv.get_prompt().strip()
|
211 |
-
outputs = fastchat(prompt, model, tokenizer)
|
212 |
-
|
213 |
-
with open(f'result/prompt1_qa/{args.model_path}/ptb/per_ent/{ent}/{gid}.txt', 'w') as f:
|
214 |
-
f.write(outputs)
|
215 |
-
|
216 |
-
|
217 |
-
if args.prompt == 2:
|
218 |
-
for gid in tqdm(gid_list, desc='Query'):
|
219 |
-
text = ptb[gid]['text']
|
220 |
|
221 |
-
## POS tagging
|
222 |
-
if os.path.exists(f'result/prompt2_instruction/pos_tagging/{args.model_path}/ptb/{gid}.txt'):
|
223 |
-
print(gid, 'skip')
|
224 |
-
|
225 |
-
else:
|
226 |
-
msg = prompt2_pos.format(text)
|
227 |
-
|
228 |
-
if 'gpt3' in args.model_path:
|
229 |
-
outputs = gpt3(msg)
|
230 |
-
if outputs is None:
|
231 |
-
continue
|
232 |
-
time.sleep(0.2)
|
233 |
-
|
234 |
-
else:
|
235 |
-
conv = get_conversation_template(args.model_path)
|
236 |
-
conv.append_message(conv.roles[0], msg)
|
237 |
-
conv.append_message(conv.roles[1], None)
|
238 |
-
conv.system = ''
|
239 |
-
prompt = conv.get_prompt()
|
240 |
-
|
241 |
-
outputs = fastchat(prompt, model, tokenizer)
|
242 |
-
|
243 |
-
with open(f'result/prompt2_instruction/pos_tagging/{args.model_path}/ptb/{gid}.txt', 'w') as f:
|
244 |
-
f.write(outputs)
|
245 |
-
|
246 |
-
|
247 |
-
## Sentence chunking
|
248 |
-
if os.path.exists(f'result/prompt2_instruction/chunking/{args.model_path}/ptb/{gid}.txt'):
|
249 |
-
print(gid, 'skip')
|
250 |
-
if False:
|
251 |
-
pass
|
252 |
-
else:
|
253 |
-
msg = prompt2_chunk.format(text)
|
254 |
-
|
255 |
-
if 'gpt3' in args.model_path:
|
256 |
-
outputs = gpt3(msg)
|
257 |
-
if outputs is None:
|
258 |
-
continue
|
259 |
-
time.sleep(0.2)
|
260 |
-
|
261 |
-
else:
|
262 |
-
conv = get_conversation_template(args.model_path)
|
263 |
-
conv.append_message(conv.roles[0], msg)
|
264 |
-
conv.append_message(conv.roles[1], None)
|
265 |
-
conv.system = ''
|
266 |
-
prompt = conv.get_prompt()
|
267 |
-
|
268 |
-
outputs = fastchat(prompt, model, tokenizer)
|
269 |
-
|
270 |
-
print(args.model_path, gid, outputs)
|
271 |
-
with open(f'result/prompt2_instruction/chunking/{args.model_path}/ptb/{gid}.txt', 'w') as f:
|
272 |
-
f.write(outputs)
|
273 |
-
|
274 |
-
|
275 |
-
## Parsing
|
276 |
-
if os.path.exists(f'result/prompt2_instruction/parsing/{args.model_path}/ptb/{gid}.txt'):
|
277 |
-
print(gid, 'skip')
|
278 |
-
|
279 |
-
else:
|
280 |
-
msg = prompt2_parse.format(text)
|
281 |
-
|
282 |
-
if 'gpt3' in args.model_path:
|
283 |
-
outputs = gpt3(msg)
|
284 |
-
if outputs is None:
|
285 |
-
continue
|
286 |
-
time.sleep(0.2)
|
287 |
-
|
288 |
-
else:
|
289 |
-
conv = get_conversation_template(args.model_path)
|
290 |
-
conv.append_message(conv.roles[0], msg)
|
291 |
-
conv.append_message(conv.roles[1], None)
|
292 |
-
conv.system = ''
|
293 |
-
prompt = conv.get_prompt()
|
294 |
-
|
295 |
-
outputs = fastchat(prompt, model, tokenizer)
|
296 |
-
|
297 |
-
with open(f'result/prompt2_instruction/parsing/{args.model_path}/ptb/{gid}.txt', 'w') as f:
|
298 |
-
f.write(outputs)
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
if args.prompt == 3:
|
303 |
-
for gid in tqdm(gid_list, desc='Query'):
|
304 |
-
text = ptb[gid]['text']
|
305 |
-
tokens = ptb[gid]['tokens']
|
306 |
-
poss = ptb[gid]['uni_poss']
|
307 |
-
|
308 |
-
## POS tagging
|
309 |
-
if os.path.exists(f'result/prompt3_structured_prompt/pos_tagging/{args.model_path}/ptb/{gid}.txt'):
|
310 |
-
print(gid, 'skip')
|
311 |
-
continue
|
312 |
-
|
313 |
-
prompt = demon_pos + '\n' + 'C: ' + text + '\n' + 'T: '
|
314 |
-
|
315 |
-
if 'gpt3' in args.model_path:
|
316 |
-
outputs = gpt3(prompt)
|
317 |
-
if outputs is None:
|
318 |
-
continue
|
319 |
-
time.sleep(0.2)
|
320 |
-
|
321 |
-
else:
|
322 |
-
pred_poss = []
|
323 |
-
for _tok, _pos in zip(tokens, poss):
|
324 |
-
prompt = prompt + ' ' + _tok + '_'
|
325 |
-
outputs = structured_prompt(prompt, model, tokenizer, bad_words_ids_pos)
|
326 |
-
prompt = prompt + outputs
|
327 |
-
pred_poss.append(outputs)
|
328 |
-
|
329 |
-
outputs = ' '.join(pred_poss)
|
330 |
-
with open(f'result/prompt3_structured_prompt/pos_tagging/{args.model_path}/ptb/{gid}.txt', 'w') as f:
|
331 |
-
f.write(outputs)
|
332 |
-
|
333 |
-
|
334 |
-
## Chunking
|
335 |
-
if os.path.exists(f'result/prompt3_structured_prompt/chunking/{args.model_path}/ptb/{gid}.txt'):
|
336 |
-
print(gid, 'skip')
|
337 |
-
continue
|
338 |
-
|
339 |
-
prompt = demon_chunk + '\n' + 'C: ' + text + '\n' + 'T: '
|
340 |
-
|
341 |
-
if 'gpt3' in args.model_path:
|
342 |
-
outputs = gpt3(prompt)
|
343 |
-
print(outputs)
|
344 |
-
if outputs is None:
|
345 |
-
continue
|
346 |
-
time.sleep(0.2)
|
347 |
-
|
348 |
-
else:
|
349 |
-
pred_chunk = []
|
350 |
-
for _tok, _pos in zip(tokens, poss):
|
351 |
-
prompt = prompt + ' ' + _tok + '_'
|
352 |
-
|
353 |
-
# Generate BIO
|
354 |
-
outputs_bio = structured_prompt(prompt, model, tokenizer, bad_words_ids_bio)
|
355 |
-
prompt = prompt + outputs_bio + '-'
|
356 |
-
|
357 |
-
# Generate tag
|
358 |
-
outputs_chunk = structured_prompt(prompt, model, tokenizer, bad_words_ids_chunk)
|
359 |
-
prompt = prompt + outputs_chunk
|
360 |
-
|
361 |
-
pred_chunk.append((outputs_bio + '-' + outputs_chunk))
|
362 |
-
|
363 |
-
outputs = ' '.join(pred_chunk)
|
364 |
-
|
365 |
-
with open(f'result/prompt3_structured_prompt/chunking/{args.model_path}/ptb/{gid}.txt', 'w') as f:
|
366 |
-
f.write(outputs)
|
367 |
-
|
368 |
-
## Parsing
|
369 |
-
if os.path.exists(f'result/prompt3_structured_prompt/parsing/{args.model_path}/ptb/{gid}.txt'):
|
370 |
-
print(gid, 'skip')
|
371 |
-
continue
|
372 |
-
|
373 |
-
prompt = demon_parse + '\n' + 'C: ' + text + '\n' + 'T: '
|
374 |
-
|
375 |
-
if 'gpt3' in args.model_path:
|
376 |
-
outputs = gpt3(prompt)
|
377 |
-
if outputs is None:
|
378 |
-
continue
|
379 |
-
time.sleep(0.2)
|
380 |
-
|
381 |
-
else:
|
382 |
-
pred_syn = []
|
383 |
-
for _tok, _pos in zip(tokens, poss):
|
384 |
-
prompt = prompt + _tok + '_'
|
385 |
-
outputs = structured_prompt(prompt, model, tokenizer, bad_words_ids_parse)
|
386 |
-
pred_syn.append(outputs)
|
387 |
-
|
388 |
-
with open(f'result/prompt3_structured_prompt/parsing/{args.model_path}/ptb/{gid}.txt', 'w') as f:
|
389 |
-
f.write(' '.join(pred_syn))
|
390 |
-
|
391 |
-
|
392 |
-
def structured_prompt(prompt, model, tokenizer, bad_words_ids):
|
393 |
-
input_ids = tokenizer([prompt]).input_ids
|
394 |
-
output_ids = model.generate(
|
395 |
-
torch.as_tensor(input_ids).cuda(),
|
396 |
-
max_new_tokens=1,
|
397 |
-
bad_words_ids=bad_words_ids,
|
398 |
-
)
|
399 |
-
|
400 |
-
if model.config.is_encoder_decoder:
|
401 |
-
output_ids = output_ids[0]
|
402 |
-
else:
|
403 |
-
output_ids = output_ids[0][len(input_ids[0]) :]
|
404 |
-
outputs = tokenizer.decode(
|
405 |
-
output_ids, skip_special_tokens=True, spaces_between_special_tokens=False
|
406 |
-
)
|
407 |
-
|
408 |
-
return outputs
|
409 |
-
|
410 |
-
|
411 |
-
def fastchat(prompt, model, tokenizer):
|
412 |
-
input_ids = tokenizer([prompt]).input_ids
|
413 |
-
output_ids = model.generate(
|
414 |
-
torch.as_tensor(input_ids).cuda(),
|
415 |
-
do_sample=True,
|
416 |
-
temperature=args.temperature,
|
417 |
-
repetition_penalty=args.repetition_penalty,
|
418 |
-
max_new_tokens=args.max_new_tokens,
|
419 |
-
)
|
420 |
-
|
421 |
-
if model.config.is_encoder_decoder:
|
422 |
-
output_ids = output_ids[0]
|
423 |
-
else:
|
424 |
-
output_ids = output_ids[0][len(input_ids[0]) :]
|
425 |
-
outputs = tokenizer.decode(
|
426 |
-
output_ids, skip_special_tokens=True, spaces_between_special_tokens=False
|
427 |
-
)
|
428 |
-
|
429 |
-
#print('Empty system message')
|
430 |
-
#print(f"{conv.roles[0]}: {msg}")
|
431 |
-
#print(f"{conv.roles[1]}: {outputs}")
|
432 |
-
|
433 |
-
return outputs
|
434 |
-
|
435 |
-
|
436 |
-
def gpt3(prompt):
|
437 |
-
try:
|
438 |
-
response = openai.ChatCompletion.create(
|
439 |
-
model=model_mapping[args.model_path], messages=[{"role": "user", "content": prompt}])
|
440 |
-
|
441 |
-
return response['choices'][0]['message']['content']
|
442 |
-
|
443 |
-
except Exception as err:
|
444 |
-
print('Error')
|
445 |
-
print(err)
|
446 |
-
|
447 |
-
return None
|
448 |
-
|
449 |
-
|
450 |
-
if __name__ == "__main__":
|
451 |
-
parser = argparse.ArgumentParser()
|
452 |
-
add_model_args(parser)
|
453 |
-
parser.add_argument("--temperature", type=float, default=0.7)
|
454 |
-
parser.add_argument("--repetition_penalty", type=float, default=1.0)
|
455 |
-
parser.add_argument("--max-new-tokens", type=int, default=512)
|
456 |
-
parser.add_argument("--debug", action="store_true")
|
457 |
-
parser.add_argument("--message", type=str, default="Hello! Who are you?")
|
458 |
-
parser.add_argument("--start", type=int, default=0)
|
459 |
-
parser.add_argument("--end", type=int, default=1000)
|
460 |
-
parser.add_argument("--prompt", required=True, type=int, default=None)
|
461 |
-
# parser.add_argument("--system_msg", required=True, type=str, default='default_system_msg')
|
462 |
-
args = parser.parse_args()
|
463 |
-
|
464 |
-
# Reset default repetition penalty for T5 models.
|
465 |
-
if "t5" in args.model_path and args.repetition_penalty == 1.0:
|
466 |
-
args.repetition_penalty = 1.2
|
467 |
-
|
468 |
-
main(args)
|
|
|
15 |
from nltk.tag.mapping import _UNIVERSAL_TAGS
|
16 |
|
17 |
import gradio as gr
|
18 |
+
from transformers import pipeline
|
19 |
|
20 |
uni_tags = list(_UNIVERSAL_TAGS)
|
21 |
uni_tags[-1] = 'PUNC'
|
|
|
27 |
'WHADVP', 'NX', 'PRT', 'VBZ', 'VBP', 'MD', 'NN', 'WHPP', 'SQ', 'SBARQ', 'LST', 'INTJ', 'X', 'UCP', 'CONJP', 'NNP', 'CD', 'JJ',
|
28 |
'VBD', 'WHADJP', 'PRP', 'RRC', 'NNS', 'SYM', 'CC']
|
29 |
|
30 |
+
openai.api_key = " "
|
|
|
31 |
|
32 |
# determinant vs. determiner
|
33 |
# https://wikidiff.com/determiner/determinant
|
|
|
48 |
|
49 |
for i, j in zip(ents, ents_prompt):
|
50 |
print(i, j)
|
|
|
|
|
51 |
|
52 |
model_mapping = {
|
53 |
+
'gpt3.5': 'gpt2',
|
54 |
+
#'vicuna-7b': 'lmsys/vicuna-7b-v1.3',
|
55 |
+
#'llama-7b': './llama/hf/7B',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
}
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
with open('sample_uniform_1k_2.txt', 'r') as f:
|
59 |
selected_idx = f.readlines()
|
60 |
selected_idx = [int(i.strip()) for i in selected_idx]#[s:e]
|
61 |
|
|
|
62 |
ptb = []
|
63 |
with open('ptb.jsonl', 'r') as f:
|
64 |
for l in f:
|
|
|
84 |
with open('demonstration_3_42_parse.txt', 'r') as f:
|
85 |
demon_parse = f.read()
|
86 |
|
87 |
+
# Your existing code
|
88 |
+
theme = gr.themes.Soft()
|
89 |
|
90 |
+
# issue get request for gpt 3.5
|
91 |
+
gpt_pipeline = pipeline(task="text2text-generation", model="gpt2")
|
92 |
+
#vicuna7b_pipeline = pipeline(task="text2text-generation", model="lmsys/vicuna-7b-v1.3")
|
93 |
+
#llama7b_pipeline = pipeline(task="text2text-generation", model="./llama/hf/7B")
|
|
|
|
|
|
|
94 |
|
95 |
+
# Dropdown options for model and task
|
96 |
+
model_options = list(model_mapping.keys())
|
97 |
+
task_options = ['POS', 'Chunking'] # remove parsing
|
98 |
|
99 |
|
100 |
+
# Function to process text based on model and task
|
101 |
+
def process_text(model_name, task, text):
|
102 |
+
gid_list = selected_idx[0:20]
|
103 |
|
104 |
+
for gid in tqdm(gid_list, desc='Query'):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
text = ptb[gid]['text']
|
106 |
+
|
107 |
+
if model_name == 'vicuna-7b':
|
108 |
+
if task == 'POS':
|
109 |
+
strategy1_format = template_all.format(text)
|
110 |
+
strategy2_format = prompt2_pos.format(text)
|
111 |
+
strategy3_format = demon_pos
|
112 |
+
|
113 |
+
result1 = gpt_pipeline(strategy1_format)[0]['generated_text']
|
114 |
+
result2 = gpt_pipeline(strategy2_format)[0]['generated_text']
|
115 |
+
result3 = gpt_pipeline(strategy3_format)[0]['generated_text']
|
116 |
+
return (result1, result2, result3)
|
117 |
+
elif task == 'Chunking':
|
118 |
+
strategy1_format = template_all.format(text)
|
119 |
+
strategy2_format = prompt2_chunk.format(text)
|
120 |
+
strategy3_format = demon_chunk
|
121 |
+
|
122 |
+
result1 = gpt_pipeline(strategy1_format)[0]['generated_text']
|
123 |
+
result2 = gpt_pipeline(strategy2_format)[0]['generated_text']
|
124 |
+
result3 = gpt_pipeline(strategy3_format)[0]['generated_text']
|
125 |
+
return (result1, result2, result3)
|
126 |
+
|
127 |
+
# Gradio interface
|
128 |
+
iface = gr.Interface(
|
129 |
+
fn=process_text,
|
130 |
+
inputs=[
|
131 |
+
gr.Dropdown(model_options, label="Select Model"),
|
132 |
+
gr.Dropdown(task_options, label="Select Task"),
|
133 |
+
gr.Textbox(label="Input Text", placeholder="Enter the text to process..."),
|
134 |
+
],
|
135 |
+
outputs=[
|
136 |
+
gr.Textbox(label="Strategy 1 QA Result"),
|
137 |
+
gr.Textbox(label="Strategy 2 Instruction Result"),
|
138 |
+
gr.Textbox(label="Strategy 3 Structured Prompting Result"),
|
139 |
+
],
|
140 |
+
title = "LLM Evaluator For Linguistic Scrutiny",
|
141 |
+
theme = theme,
|
142 |
+
live=False,
|
143 |
+
)
|
144 |
+
|
145 |
+
iface.launch()
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|