Spaces:
Sleeping
Sleeping
research14
commited on
Commit
•
c954d81
1
Parent(s):
1fa987e
Test
Browse files- __pycache__/run_llm.cpython-311.pyc +0 -0
- app.py +14 -34
- run_llm.py +22 -3
__pycache__/run_llm.cpython-311.pyc
CHANGED
Binary files a/__pycache__/run_llm.cpython-311.pyc and b/__pycache__/run_llm.cpython-311.pyc differ
|
|
app.py
CHANGED
@@ -1,48 +1,28 @@
|
|
1 |
-
|
|
|
2 |
import gradio as gr
|
3 |
-
from run_llm import
|
4 |
-
import argparse
|
5 |
|
6 |
theme = gr.themes.Soft()
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
end=1 # Set to 1 to process a single sentence
|
14 |
-
)
|
15 |
-
main(args)
|
16 |
-
|
17 |
-
# Create directories if they don't exist
|
18 |
-
os.makedirs(f'result/prompt1_qa/{model}/ptb/per_ent/NOUN', exist_ok=True)
|
19 |
-
os.makedirs(f'result/prompt2_instruction/chunking/{model}/ptb', exist_ok=True)
|
20 |
-
os.makedirs(f'result/prompt3_structured_prompt/chunking/{model}/ptb', exist_ok=True)
|
21 |
-
|
22 |
-
# Read the outputs from the result files
|
23 |
-
with open(f'result/prompt1_qa/{model}/ptb/per_ent/NOUN/0.txt', 'r') as f:
|
24 |
-
output_1 = f.read()
|
25 |
-
|
26 |
-
with open(f'result/prompt2_instruction/chunking/{model}/ptb/0.txt', 'r') as f:
|
27 |
-
output_2 = f.read()
|
28 |
-
|
29 |
-
with open(f'result/prompt3_structured_prompt/chunking/{model}/ptb/0.txt', 'r') as f:
|
30 |
-
output_3 = f.read()
|
31 |
-
|
32 |
-
return {"output_1": output_1, "output_2": output_2, "output_3": output_3}
|
33 |
|
34 |
# Define example instructions for testing
|
35 |
instruction_examples = [
|
36 |
-
["
|
37 |
-
["
|
38 |
-
["
|
39 |
]
|
40 |
|
41 |
with gr.Interface(
|
42 |
fn=run_llm_interface,
|
43 |
inputs=[
|
44 |
-
gr.Dropdown(['gpt3.5', 'vicuna-7b', 'vicuna-13b', 'fastchat-t5', 'llama-7b', 'llama-13b', 'llama-30b', 'alpaca'], label="Select Model", default='gpt3.5', key="
|
45 |
-
gr.Dropdown(['POS Tagging', 'Chunking', 'Parsing'], label="Select Task", default='POS Tagging', key="
|
46 |
gr.Textbox("", label="Enter Sentence", key="sentence", placeholder="Enter a sentence..."),
|
47 |
],
|
48 |
outputs=[
|
@@ -50,7 +30,7 @@ with gr.Interface(
|
|
50 |
gr.Textbox("", label="Strategy 2 Output", key="output_2", readonly=True),
|
51 |
gr.Textbox("", label="Strategy 3 Output", key="output_3", readonly=True),
|
52 |
],
|
53 |
-
examples=instruction_examples,
|
54 |
live=False,
|
55 |
title="LLM Evaluator with Linguistic Scrutiny",
|
56 |
theme=theme
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
import gradio as gr
|
4 |
+
from run_llm import run_llm_interface
|
|
|
5 |
|
6 |
theme = gr.themes.Soft()
|
7 |
|
8 |
+
# 3 inputs:
|
9 |
+
# - An input text which will be a random string
|
10 |
+
# - First dropdown to select the task (POS, Chunking, Parsing)
|
11 |
+
# - Second dropdown select the model type
|
12 |
+
# use run_llm.py to feed the models and then output 3 results in 3 output boxes, one for each strategy (strategy 1, 2 and 3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Define example instructions for testing
|
15 |
instruction_examples = [
|
16 |
+
["Describe the origin of the universe"],
|
17 |
+
["Explain the concept of artificial intelligence"],
|
18 |
+
["Describe the most common types of cancer"],
|
19 |
]
|
20 |
|
21 |
with gr.Interface(
|
22 |
fn=run_llm_interface,
|
23 |
inputs=[
|
24 |
+
gr.Dropdown(['gpt3.5', 'vicuna-7b', 'vicuna-13b', 'fastchat-t5', 'llama-7b', 'llama-13b', 'llama-30b', 'alpaca'], label="Select Model", default='gpt3.5', key="model_path"),
|
25 |
+
gr.Dropdown(['POS Tagging', 'Chunking', 'Parsing'], label="Select Task", default='POS Tagging', key="prompt"),
|
26 |
gr.Textbox("", label="Enter Sentence", key="sentence", placeholder="Enter a sentence..."),
|
27 |
],
|
28 |
outputs=[
|
|
|
30 |
gr.Textbox("", label="Strategy 2 Output", key="output_2", readonly=True),
|
31 |
gr.Textbox("", label="Strategy 3 Output", key="output_3", readonly=True),
|
32 |
],
|
33 |
+
examples=instruction_examples,
|
34 |
live=False,
|
35 |
title="LLM Evaluator with Linguistic Scrutiny",
|
36 |
theme=theme
|
run_llm.py
CHANGED
@@ -426,9 +426,9 @@ def fastchat(prompt, model, tokenizer):
|
|
426 |
output_ids, skip_special_tokens=True, spaces_between_special_tokens=False
|
427 |
)
|
428 |
|
429 |
-
print('Empty system message')
|
430 |
-
print(f"{conv.roles[0]}: {msg}")
|
431 |
-
print(f"{conv.roles[1]}: {outputs}")
|
432 |
|
433 |
return outputs
|
434 |
|
@@ -446,6 +446,25 @@ def gpt3(prompt):
|
|
446 |
|
447 |
return None
|
448 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
449 |
|
450 |
if __name__ == "__main__":
|
451 |
parser = argparse.ArgumentParser()
|
|
|
426 |
output_ids, skip_special_tokens=True, spaces_between_special_tokens=False
|
427 |
)
|
428 |
|
429 |
+
#print('Empty system message')
|
430 |
+
#print(f"{conv.roles[0]}: {msg}")
|
431 |
+
#print(f"{conv.roles[1]}: {outputs}")
|
432 |
|
433 |
return outputs
|
434 |
|
|
|
446 |
|
447 |
return None
|
448 |
|
449 |
+
def run_llm_interface(model_path, prompt, sentence):
|
450 |
+
import argparse
|
451 |
+
from run_llm import main
|
452 |
+
|
453 |
+
# Construct arguments
|
454 |
+
args = argparse.Namespace(
|
455 |
+
model_path=model_path,
|
456 |
+
temperature=0.7,
|
457 |
+
repetition_penalty=1.0,
|
458 |
+
max_new_tokens=512,
|
459 |
+
debug=False,
|
460 |
+
message="Hello! Who are you?",
|
461 |
+
start=0,
|
462 |
+
end=1000,
|
463 |
+
prompt=prompt,
|
464 |
+
)
|
465 |
+
|
466 |
+
# Run the main function
|
467 |
+
main(args=args)
|
468 |
|
469 |
if __name__ == "__main__":
|
470 |
parser = argparse.ArgumentParser()
|