Spaces:
Sleeping
Sleeping
research14
commited on
Commit
•
f9ca505
1
Parent(s):
037e269
test chatbot
Browse files- app.py +25 -166
- placeholder.py +175 -0
app.py
CHANGED
@@ -1,175 +1,34 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import json
|
4 |
-
import time
|
5 |
-
import openai
|
6 |
-
import pickle
|
7 |
-
import argparse
|
8 |
-
import requests
|
9 |
-
from tqdm import tqdm
|
10 |
-
import torch
|
11 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM, LlamaTokenizer
|
12 |
-
|
13 |
-
from fastchat.model import load_model, get_conversation_template, add_model_args
|
14 |
-
|
15 |
-
from nltk.tag.mapping import _UNIVERSAL_TAGS
|
16 |
-
|
17 |
import gradio as gr
|
18 |
-
from transformers import
|
19 |
-
|
20 |
-
demo = gr.Blocks()
|
21 |
-
|
22 |
-
uni_tags = list(_UNIVERSAL_TAGS)
|
23 |
-
uni_tags[-1] = 'PUNC'
|
24 |
-
|
25 |
-
bio_tags = ['B', 'I', 'O']
|
26 |
-
chunk_tags = ['ADJP', 'ADVP', 'CONJP', 'INTJ', 'LST', 'NP', 'O', 'PP', 'PRT', 'SBAR', 'UCP', 'VP']
|
27 |
-
|
28 |
-
syntags = ['NP', 'S', 'VP', 'ADJP', 'ADVP', 'SBAR', 'TOP', 'PP', 'POS', 'NAC', "''", 'SINV', 'PRN', 'QP', 'WHNP', 'RB', 'FRAG',
|
29 |
-
'WHADVP', 'NX', 'PRT', 'VBZ', 'VBP', 'MD', 'NN', 'WHPP', 'SQ', 'SBARQ', 'LST', 'INTJ', 'X', 'UCP', 'CONJP', 'NNP', 'CD', 'JJ',
|
30 |
-
'VBD', 'WHADJP', 'PRP', 'RRC', 'NNS', 'SYM', 'CC']
|
31 |
-
|
32 |
-
openai.api_key = " "
|
33 |
-
|
34 |
-
# determinant vs. determiner
|
35 |
-
# https://wikidiff.com/determiner/determinant
|
36 |
-
ents_prompt = ['Noun','Verb','Adjective','Adverb','Preposition/Subord','Coordinating Conjunction',# 'Cardinal Number',
|
37 |
-
'Determiner',
|
38 |
-
'Noun Phrase','Verb Phrase','Adjective Phrase','Adverb Phrase','Preposition Phrase','Conjunction Phrase','Coordinate Phrase','Quantitave Phrase','Complex Nominal',
|
39 |
-
'Clause','Dependent Clause','Fragment Clause','T-unit','Complex T-unit',# 'Fragment T-unit',
|
40 |
-
][7:]
|
41 |
-
ents = ['NN', 'VB', 'JJ', 'RB', 'IN', 'CC', 'DT', 'NP', 'VP', 'ADJP', 'ADVP', 'PP', 'CONJP', 'CP', 'QP', 'CN', 'C', 'DC', 'FC', 'T', 'CT'][7:]
|
42 |
-
|
43 |
-
|
44 |
-
ents_prompt_uni_tags = ['Verb', 'Noun', 'Pronoun', 'Adjective', 'Adverb', 'Preposition and Postposition', 'Coordinating Conjunction',
|
45 |
-
'Determiner', 'Cardinal Number', 'Particles or other function words',
|
46 |
-
'Words that cannot be assigned a POS tag', 'Punctuation']
|
47 |
-
|
48 |
-
ents = uni_tags + ents
|
49 |
-
ents_prompt = ents_prompt_uni_tags + ents_prompt
|
50 |
-
|
51 |
-
for i, j in zip(ents, ents_prompt):
|
52 |
-
print(i, j)
|
53 |
-
|
54 |
-
model_mapping = {
|
55 |
-
'gpt3.5': 'gpt2',
|
56 |
-
#'vicuna-7b': 'lmsys/vicuna-7b-v1.3',
|
57 |
-
#'llama-7b': './llama/hf/7B',
|
58 |
-
}
|
59 |
-
|
60 |
-
with open('sample_uniform_1k_2.txt', 'r') as f:
|
61 |
-
selected_idx = f.readlines()
|
62 |
-
selected_idx = [int(i.strip()) for i in selected_idx]#[s:e]
|
63 |
-
|
64 |
-
ptb = []
|
65 |
-
with open('ptb.jsonl', 'r') as f:
|
66 |
-
for l in f:
|
67 |
-
ptb.append(json.loads(l))
|
68 |
-
|
69 |
-
|
70 |
-
## Prompt 1
|
71 |
-
template_all = '''Please output the <Noun, Verb, Adjective, Adverb, Preposition/Subord, Coordinating Conjunction, Cardinal Number, Determiner, Noun Phrase, Verb Phrase, Adjective Phrase, Adverb Phrase, Preposition Phrase, Conjunction Phrase, Coordinate Phrase, Quantitave Phrase, Complex Nominal, Clause, Dependent Clause, Fragment Clause, T-unit, Complex T-unit, Fragment T-unit> in the following sentence without any additional text in json format: "{}"'''
|
72 |
-
template_single = '''Please output any <{}> in the following sentence one per line without any additional text: "{}"'''
|
73 |
-
|
74 |
-
## Prompt 2
|
75 |
-
prompt2_pos = '''Please pos tag the following sentence using Universal POS tag set without generating any additional text: {}'''
|
76 |
-
prompt2_chunk = '''Please do sentence chunking for the following sentence as in CoNLL 2000 shared task without generating any addtional text: {}'''
|
77 |
-
prompt2_parse = '''Generate textual representation of the constituency parse tree of the following sentence using Penn TreeBank tag set without outputing any additional text: {}'''
|
78 |
-
|
79 |
-
prompt2_chunk = '''Please chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {}'''
|
80 |
-
|
81 |
-
## Prompt 3
|
82 |
-
with open('demonstration_3_42_pos.txt', 'r') as f:
|
83 |
-
demon_pos = f.read()
|
84 |
-
with open('demonstration_3_42_chunk.txt', 'r') as f:
|
85 |
-
demon_chunk = f.read()
|
86 |
-
with open('demonstration_3_42_parse.txt', 'r') as f:
|
87 |
-
demon_parse = f.read()
|
88 |
-
|
89 |
-
# Your existing code
|
90 |
-
theme = gr.themes.Soft()
|
91 |
-
|
92 |
-
# issue get request for gpt 3.5
|
93 |
-
gpt_pipeline = pipeline(task="text2text-generation", model="gpt2")
|
94 |
-
#vicuna7b_pipeline = pipeline(task="text2text-generation", model="lmsys/vicuna-7b-v1.3")
|
95 |
-
#llama7b_pipeline = pipeline(task="text2text-generation", model="./llama/hf/7B")
|
96 |
|
97 |
-
#
|
98 |
-
|
99 |
-
|
100 |
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
if tab == 'POS Tab':
|
105 |
-
strategy1_format = template_all.format(text)
|
106 |
-
strategy2_format = prompt2_pos.format(text)
|
107 |
-
strategy3_format = demon_pos
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
strategy1_format = template_all.format(text)
|
116 |
-
strategy2_format = prompt2_chunk.format(text)
|
117 |
-
strategy3_format = demon_chunk
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
123 |
|
124 |
-
|
125 |
-
with demo:
|
126 |
-
gr.Markdown("# LLM Evaluator With Linguistic Scrutiny")
|
127 |
-
|
128 |
-
with gr.Tabs():
|
129 |
-
with gr.TabItem("POS", id="POS Tab"):
|
130 |
-
with gr.Row():
|
131 |
-
gr.Markdown("<center>Vicuna 7b</center>")
|
132 |
-
gr.Markdown("<center> LLaMA-7b </center>")
|
133 |
-
gr.Markdown("<center> GPT 3.5 </center>")
|
134 |
-
with gr.Row():
|
135 |
-
model1_S1_output = gr.Textbox(label="Strategy 1 QA")
|
136 |
-
model2_S1_output = gr.Textbox(label=".")
|
137 |
-
model3_S1_output = gr.Textbox(label=".")
|
138 |
-
with gr.Row():
|
139 |
-
model1_S2_output = gr.Textbox(label="Strategy 2 Instruction")
|
140 |
-
model2_S2_output = gr.Textbox(label=".")
|
141 |
-
model3_S2_output = gr.Textbox(label=".")
|
142 |
-
with gr.Row():
|
143 |
-
model1_S3_output = gr.Textbox(label="Strategy 3 Structured Prompting")
|
144 |
-
model2_S3_output = gr.Textbox(label=".")
|
145 |
-
model3_S3_output = gr.Textbox(label=".")
|
146 |
-
with gr.Row():
|
147 |
-
prompt_POS = gr.Textbox(show_label=False, placeholder="Enter prompt")
|
148 |
-
send_button_POS = gr.Button("Send", scale=0)
|
149 |
-
|
150 |
-
with gr.TabItem("Chunking", id="Chunk Tab"):
|
151 |
-
with gr.Row():
|
152 |
-
gr.Markdown("<center>Vicuna 7b</center>")
|
153 |
-
gr.Markdown("<center> LLaMA-7b </center>")
|
154 |
-
gr.Markdown("<center> GPT 3.5 </center>")
|
155 |
-
with gr.Row():
|
156 |
-
model1_S1_output = gr.Textbox(label="Strategy 1 QA")
|
157 |
-
model2_S1_output = gr.Textbox(label=".")
|
158 |
-
model3_S1_output = gr.Textbox(label=".")
|
159 |
-
with gr.Row():
|
160 |
-
model1_S2_output = gr.Textbox(label="Strategy 2 Instruction")
|
161 |
-
model2_S2_output = gr.Textbox(label=".")
|
162 |
-
model3_S2_output = gr.Textbox(label=".")
|
163 |
-
with gr.Row():
|
164 |
-
model1_S3_output = gr.Textbox(label="Strategy 3 Structured Prompting")
|
165 |
-
model2_S3_output = gr.Textbox(label=".")
|
166 |
-
model3_S3_output = gr.Textbox(label=".")
|
167 |
-
with gr.Row():
|
168 |
-
prompt_Chunk = gr.Textbox(id="prompt_Chunk", show_label=False, placeholder="Enter prompt")
|
169 |
-
send_button_Chunk = gr.Button("Send", scale=0)
|
170 |
-
|
171 |
-
send_button_POS.click(process_text, inputs=["POS Tab", prompt_Chunk], outputs=[model1_S1_output, model1_S1_output, model1_S1_output])
|
172 |
-
send_button_Chunk.click(process_text, inputs=["Chunk Tab", prompt_POS], outputs=[model1_S1_output, model1_S1_output, model1_S1_output])
|
173 |
|
174 |
-
|
|
|
|
|
|
|
175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
# Load the models and tokenizers
|
5 |
+
gpt35_model = AutoModelForCausalLM.from_pretrained("gpt-3.5-turbo-0613")
|
6 |
+
gpt35_tokenizer = AutoTokenizer.from_pretrained("gpt-3.5-turbo-0613")
|
7 |
|
8 |
+
vicuna_model = AutoModelForCausalLM.from_pretrained("lmsys/vicuna-7b-v1.3")
|
9 |
+
vicuna_tokenizer = AutoTokenizer.from_pretrained("lmsys/vicuna-7b-v1.3")
|
10 |
|
11 |
+
llama_model = AutoModelForCausalLM.from_pretrained("./llama/hf/7B")
|
12 |
+
llama_tokenizer = AutoTokenizer.from_pretrained("./llama/hf/7B")
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# Define the function for generating responses
|
15 |
+
def generate_response(model, tokenizer, prompt):
|
16 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
17 |
+
outputs = model.generate(**inputs, max_length=100, pad_token_id=tokenizer.eos_token_id)
|
18 |
+
response = tokenizer.decode(outputs[0])
|
19 |
+
return response
|
|
|
|
|
|
|
20 |
|
21 |
+
# Define the Gradio interface
|
22 |
+
def chatbot_interface(prompt):
|
23 |
+
gpt35_response = generate_response(gpt35_model, gpt35_tokenizer, prompt)
|
24 |
+
vicuna_response = generate_response(vicuna_model, vicuna_tokenizer, prompt)
|
25 |
+
llama_response = generate_response(llama_model, llama_tokenizer, prompt)
|
26 |
|
27 |
+
return {"GPT-3.5": gpt35_response, "Vicuna-7B": vicuna_response, "Llama-7B": llama_response}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
iface = gr.Interface(fn=chatbot_interface,
|
30 |
+
inputs="text",
|
31 |
+
outputs="panel",
|
32 |
+
title="Chatbot with Three Models")
|
33 |
|
34 |
+
iface.launch()
|
placeholder.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import json
|
4 |
+
import time
|
5 |
+
import openai
|
6 |
+
import pickle
|
7 |
+
import argparse
|
8 |
+
import requests
|
9 |
+
from tqdm import tqdm
|
10 |
+
import torch
|
11 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM, LlamaTokenizer
|
12 |
+
|
13 |
+
from fastchat.model import load_model, get_conversation_template, add_model_args
|
14 |
+
|
15 |
+
from nltk.tag.mapping import _UNIVERSAL_TAGS
|
16 |
+
|
17 |
+
import gradio as gr
|
18 |
+
from transformers import pipeline
|
19 |
+
|
20 |
+
demo = gr.Blocks()
|
21 |
+
|
22 |
+
uni_tags = list(_UNIVERSAL_TAGS)
|
23 |
+
uni_tags[-1] = 'PUNC'
|
24 |
+
|
25 |
+
bio_tags = ['B', 'I', 'O']
|
26 |
+
chunk_tags = ['ADJP', 'ADVP', 'CONJP', 'INTJ', 'LST', 'NP', 'O', 'PP', 'PRT', 'SBAR', 'UCP', 'VP']
|
27 |
+
|
28 |
+
syntags = ['NP', 'S', 'VP', 'ADJP', 'ADVP', 'SBAR', 'TOP', 'PP', 'POS', 'NAC', "''", 'SINV', 'PRN', 'QP', 'WHNP', 'RB', 'FRAG',
|
29 |
+
'WHADVP', 'NX', 'PRT', 'VBZ', 'VBP', 'MD', 'NN', 'WHPP', 'SQ', 'SBARQ', 'LST', 'INTJ', 'X', 'UCP', 'CONJP', 'NNP', 'CD', 'JJ',
|
30 |
+
'VBD', 'WHADJP', 'PRP', 'RRC', 'NNS', 'SYM', 'CC']
|
31 |
+
|
32 |
+
openai.api_key = " "
|
33 |
+
|
34 |
+
# determinant vs. determiner
|
35 |
+
# https://wikidiff.com/determiner/determinant
|
36 |
+
ents_prompt = ['Noun','Verb','Adjective','Adverb','Preposition/Subord','Coordinating Conjunction',# 'Cardinal Number',
|
37 |
+
'Determiner',
|
38 |
+
'Noun Phrase','Verb Phrase','Adjective Phrase','Adverb Phrase','Preposition Phrase','Conjunction Phrase','Coordinate Phrase','Quantitave Phrase','Complex Nominal',
|
39 |
+
'Clause','Dependent Clause','Fragment Clause','T-unit','Complex T-unit',# 'Fragment T-unit',
|
40 |
+
][7:]
|
41 |
+
ents = ['NN', 'VB', 'JJ', 'RB', 'IN', 'CC', 'DT', 'NP', 'VP', 'ADJP', 'ADVP', 'PP', 'CONJP', 'CP', 'QP', 'CN', 'C', 'DC', 'FC', 'T', 'CT'][7:]
|
42 |
+
|
43 |
+
|
44 |
+
ents_prompt_uni_tags = ['Verb', 'Noun', 'Pronoun', 'Adjective', 'Adverb', 'Preposition and Postposition', 'Coordinating Conjunction',
|
45 |
+
'Determiner', 'Cardinal Number', 'Particles or other function words',
|
46 |
+
'Words that cannot be assigned a POS tag', 'Punctuation']
|
47 |
+
|
48 |
+
ents = uni_tags + ents
|
49 |
+
ents_prompt = ents_prompt_uni_tags + ents_prompt
|
50 |
+
|
51 |
+
for i, j in zip(ents, ents_prompt):
|
52 |
+
print(i, j)
|
53 |
+
|
54 |
+
model_mapping = {
|
55 |
+
'gpt3.5': 'gpt2',
|
56 |
+
#'vicuna-7b': 'lmsys/vicuna-7b-v1.3',
|
57 |
+
#'llama-7b': './llama/hf/7B',
|
58 |
+
}
|
59 |
+
|
60 |
+
with open('sample_uniform_1k_2.txt', 'r') as f:
|
61 |
+
selected_idx = f.readlines()
|
62 |
+
selected_idx = [int(i.strip()) for i in selected_idx]#[s:e]
|
63 |
+
|
64 |
+
ptb = []
|
65 |
+
with open('ptb.jsonl', 'r') as f:
|
66 |
+
for l in f:
|
67 |
+
ptb.append(json.loads(l))
|
68 |
+
|
69 |
+
|
70 |
+
## Prompt 1
|
71 |
+
template_all = '''Please output the <Noun, Verb, Adjective, Adverb, Preposition/Subord, Coordinating Conjunction, Cardinal Number, Determiner, Noun Phrase, Verb Phrase, Adjective Phrase, Adverb Phrase, Preposition Phrase, Conjunction Phrase, Coordinate Phrase, Quantitave Phrase, Complex Nominal, Clause, Dependent Clause, Fragment Clause, T-unit, Complex T-unit, Fragment T-unit> in the following sentence without any additional text in json format: "{}"'''
|
72 |
+
template_single = '''Please output any <{}> in the following sentence one per line without any additional text: "{}"'''
|
73 |
+
|
74 |
+
## Prompt 2
|
75 |
+
prompt2_pos = '''Please pos tag the following sentence using Universal POS tag set without generating any additional text: {}'''
|
76 |
+
prompt2_chunk = '''Please do sentence chunking for the following sentence as in CoNLL 2000 shared task without generating any addtional text: {}'''
|
77 |
+
prompt2_parse = '''Generate textual representation of the constituency parse tree of the following sentence using Penn TreeBank tag set without outputing any additional text: {}'''
|
78 |
+
|
79 |
+
prompt2_chunk = '''Please chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {}'''
|
80 |
+
|
81 |
+
## Prompt 3
|
82 |
+
with open('demonstration_3_42_pos.txt', 'r') as f:
|
83 |
+
demon_pos = f.read()
|
84 |
+
with open('demonstration_3_42_chunk.txt', 'r') as f:
|
85 |
+
demon_chunk = f.read()
|
86 |
+
with open('demonstration_3_42_parse.txt', 'r') as f:
|
87 |
+
demon_parse = f.read()
|
88 |
+
|
89 |
+
# Your existing code
|
90 |
+
theme = gr.themes.Soft()
|
91 |
+
|
92 |
+
# issue get request for gpt 3.5
|
93 |
+
gpt_pipeline = pipeline(task="text2text-generation", model="gpt2")
|
94 |
+
#vicuna7b_pipeline = pipeline(task="text2text-generation", model="lmsys/vicuna-7b-v1.3")
|
95 |
+
#llama7b_pipeline = pipeline(task="text2text-generation", model="./llama/hf/7B")
|
96 |
+
|
97 |
+
# Dropdown options for model and task
|
98 |
+
model_options = list(model_mapping.keys())
|
99 |
+
task_options = ['POS', 'Chunking'] # remove parsing
|
100 |
+
|
101 |
+
|
102 |
+
# Function to process text based on model and task
|
103 |
+
def process_text(tab, text):
|
104 |
+
if tab == 'POS Tab':
|
105 |
+
strategy1_format = template_all.format(text)
|
106 |
+
strategy2_format = prompt2_pos.format(text)
|
107 |
+
strategy3_format = demon_pos
|
108 |
+
|
109 |
+
vicuna_result1 = gpt_pipeline(strategy1_format)[0]['generated_text']
|
110 |
+
vicuna_result2 = gpt_pipeline(strategy2_format)[0]['generated_text']
|
111 |
+
vicuna_result3 = gpt_pipeline(strategy3_format)[0]['generated_text']
|
112 |
+
|
113 |
+
return (vicuna_result1, vicuna_result2, vicuna_result3)
|
114 |
+
elif tab == 'Chunk Tab':
|
115 |
+
strategy1_format = template_all.format(text)
|
116 |
+
strategy2_format = prompt2_chunk.format(text)
|
117 |
+
strategy3_format = demon_chunk
|
118 |
+
|
119 |
+
result1 = gpt_pipeline(strategy1_format)[0]['generated_text']
|
120 |
+
result2 = gpt_pipeline(strategy2_format)[0]['generated_text']
|
121 |
+
result3 = gpt_pipeline(strategy3_format)[0]['generated_text']
|
122 |
+
return (result1, result2, result3)
|
123 |
+
|
124 |
+
# Gradio interface
|
125 |
+
with demo:
|
126 |
+
gr.Markdown("# LLM Evaluator With Linguistic Scrutiny")
|
127 |
+
|
128 |
+
with gr.Tabs():
|
129 |
+
with gr.TabItem("POS", id="POS Tab"):
|
130 |
+
with gr.Row():
|
131 |
+
gr.Markdown("<center>Vicuna 7b</center>")
|
132 |
+
gr.Markdown("<center> LLaMA-7b </center>")
|
133 |
+
gr.Markdown("<center> GPT 3.5 </center>")
|
134 |
+
with gr.Row():
|
135 |
+
model1_S1_output = gr.Textbox(label="Strategy 1 QA")
|
136 |
+
model2_S1_output = gr.Textbox(label=".")
|
137 |
+
model3_S1_output = gr.Textbox(label=".")
|
138 |
+
with gr.Row():
|
139 |
+
model1_S2_output = gr.Textbox(label="Strategy 2 Instruction")
|
140 |
+
model2_S2_output = gr.Textbox(label=".")
|
141 |
+
model3_S2_output = gr.Textbox(label=".")
|
142 |
+
with gr.Row():
|
143 |
+
model1_S3_output = gr.Textbox(label="Strategy 3 Structured Prompting")
|
144 |
+
model2_S3_output = gr.Textbox(label=".")
|
145 |
+
model3_S3_output = gr.Textbox(label=".")
|
146 |
+
with gr.Row():
|
147 |
+
prompt_POS = gr.Textbox(show_label=False, placeholder="Enter prompt")
|
148 |
+
send_button_POS = gr.Button("Send", scale=0)
|
149 |
+
|
150 |
+
with gr.TabItem("Chunking", id="Chunk Tab"):
|
151 |
+
with gr.Row():
|
152 |
+
gr.Markdown("<center>Vicuna 7b</center>")
|
153 |
+
gr.Markdown("<center> LLaMA-7b </center>")
|
154 |
+
gr.Markdown("<center> GPT 3.5 </center>")
|
155 |
+
with gr.Row():
|
156 |
+
model1_S1_output = gr.Textbox(label="Strategy 1 QA")
|
157 |
+
model2_S1_output = gr.Textbox(label=".")
|
158 |
+
model3_S1_output = gr.Textbox(label=".")
|
159 |
+
with gr.Row():
|
160 |
+
model1_S2_output = gr.Textbox(label="Strategy 2 Instruction")
|
161 |
+
model2_S2_output = gr.Textbox(label=".")
|
162 |
+
model3_S2_output = gr.Textbox(label=".")
|
163 |
+
with gr.Row():
|
164 |
+
model1_S3_output = gr.Textbox(label="Strategy 3 Structured Prompting")
|
165 |
+
model2_S3_output = gr.Textbox(label=".")
|
166 |
+
model3_S3_output = gr.Textbox(label=".")
|
167 |
+
with gr.Row():
|
168 |
+
prompt_Chunk = gr.Textbox(id="prompt_Chunk", show_label=False, placeholder="Enter prompt")
|
169 |
+
send_button_Chunk = gr.Button("Send", scale=0)
|
170 |
+
|
171 |
+
send_button_POS.click(process_text, inputs=["POS Tab", prompt_Chunk], outputs=[model1_S1_output, model1_S1_output, model1_S1_output])
|
172 |
+
send_button_Chunk.click(process_text, inputs=["Chunk Tab", prompt_POS], outputs=[model1_S1_output, model1_S1_output, model1_S1_output])
|
173 |
+
|
174 |
+
demo.launch()
|
175 |
+
|