Spaces:
Runtime error
Runtime error
Ruben
commited on
Commit
•
6da9d0a
1
Parent(s):
b7b124d
cleaned
Browse files- Makefile +0 -24
- README copy.md +0 -10
- README.md +1 -1
- app.py +15 -41
- gradio-app.py +0 -42
- gradio-mock-app.py +0 -12
- launch_full_interface.ipynb +0 -107
- main.py +0 -3
Makefile
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
install-node:
|
2 |
-
./install-node.sh
|
3 |
-
|
4 |
-
build-client:
|
5 |
-
cd frontend && npm install && npm run build && rm -rf ../static && cp -r build/ ../static/
|
6 |
-
|
7 |
-
build-dev:
|
8 |
-
cd frontend && npm install && NODE_ENV=development npm run build && rm -rf ../static 2>&1 && cp -rv build/ ../static/
|
9 |
-
|
10 |
-
run-dev:
|
11 |
-
FLASK_DEBUG=development python3 app.py
|
12 |
-
|
13 |
-
run-prod:
|
14 |
-
python3 app.py & python3 gradio-app.py
|
15 |
-
|
16 |
-
run-mock:
|
17 |
-
python3 app.py & python3 gradio-mock-app.py
|
18 |
-
|
19 |
-
stop-server:
|
20 |
-
killall python
|
21 |
-
|
22 |
-
all: run-prod
|
23 |
-
|
24 |
-
mock: run-mock
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README copy.md
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
---
|
2 |
-
title: Drawing2Map
|
3 |
-
emoji: 🌍
|
4 |
-
colorFrom: red
|
5 |
-
colorTo: red
|
6 |
-
sdk: docker
|
7 |
-
pinned: false
|
8 |
-
---
|
9 |
-
|
10 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title: Drawing2Map
|
3 |
emoji: 🎨
|
4 |
colorFrom: blue
|
5 |
colorTo: green
|
|
|
1 |
---
|
2 |
+
title: Drawing2Map-api
|
3 |
emoji: 🎨
|
4 |
colorFrom: blue
|
5 |
colorTo: green
|
app.py
CHANGED
@@ -4,36 +4,16 @@ import requests
|
|
4 |
from gradio_client import Client
|
5 |
import base64
|
6 |
|
7 |
-
from PIL import Image
|
8 |
-
from io import BytesIO
|
9 |
-
import base64
|
10 |
-
import os
|
11 |
-
|
12 |
-
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
13 |
-
from diffusers.utils import load_image
|
14 |
-
import torch
|
15 |
-
|
16 |
-
import gradio as gr
|
17 |
-
|
18 |
-
controlnet = ControlNetModel.from_pretrained("rgres/sd-controlnet-aerialdreams", torch_dtype=torch.float16)
|
19 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
20 |
-
"stabilityai/stable-diffusion-2-1-base", controlnet=controlnet, torch_dtype=torch.float16
|
21 |
-
)
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
# CPU offloading for faster inference times
|
26 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
27 |
-
pipe.enable_model_cpu_offload()
|
28 |
|
29 |
app = Flask(__name__, static_url_path='/static')
|
30 |
|
31 |
-
|
32 |
@app.route('/')
|
33 |
def index():
|
34 |
return app.send_static_file('index.html')
|
35 |
|
36 |
-
|
37 |
def save_base64_image(base64Image):
|
38 |
image_data = base64.b64decode(base64Image)
|
39 |
path = "input_image.jpg"
|
@@ -41,28 +21,17 @@ def save_base64_image(base64Image):
|
|
41 |
f.write(image_data)
|
42 |
return path
|
43 |
|
44 |
-
|
45 |
def encode_image_to_base64(filepath):
|
46 |
with open(filepath, "rb") as image_file:
|
47 |
encoded_image = base64.b64encode(image_file.read()).decode("utf-8")
|
48 |
return encoded_image
|
49 |
|
50 |
-
|
51 |
-
def generate_map(image, prompt, steps, seed):
|
52 |
-
#image = Image.open(BytesIO(base64.b64decode(image_base64)))
|
53 |
-
generator = torch.manual_seed(seed)
|
54 |
-
|
55 |
-
image = pipe(
|
56 |
-
prompt=prompt,
|
57 |
-
num_inference_steps=steps,
|
58 |
-
image=image
|
59 |
-
).images[0]
|
60 |
-
|
61 |
-
return image
|
62 |
-
|
63 |
-
|
64 |
@app.route('/predict', methods=['POST'])
|
65 |
def predict():
|
|
|
|
|
|
|
|
|
66 |
data = request.get_json()
|
67 |
|
68 |
base64Image = data['data'][0]
|
@@ -71,11 +40,16 @@ def predict():
|
|
71 |
seed = data['data'][3]
|
72 |
|
73 |
b64meta, b64_data = base64Image.split(',')
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
|
79 |
if __name__ == '__main__':
|
80 |
app.run(host='0.0.0.0', port=int(
|
81 |
-
os.environ.get('
|
|
|
4 |
from gradio_client import Client
|
5 |
import base64
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
base_gradio_url = os.getenv('URL_GRADIO', 'http://localhost:7860')
|
9 |
+
client = None
|
|
|
|
|
|
|
10 |
|
11 |
app = Flask(__name__, static_url_path='/static')
|
12 |
|
|
|
13 |
@app.route('/')
|
14 |
def index():
|
15 |
return app.send_static_file('index.html')
|
16 |
|
|
|
17 |
def save_base64_image(base64Image):
|
18 |
image_data = base64.b64decode(base64Image)
|
19 |
path = "input_image.jpg"
|
|
|
21 |
f.write(image_data)
|
22 |
return path
|
23 |
|
|
|
24 |
def encode_image_to_base64(filepath):
|
25 |
with open(filepath, "rb") as image_file:
|
26 |
encoded_image = base64.b64encode(image_file.read()).decode("utf-8")
|
27 |
return encoded_image
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
@app.route('/predict', methods=['POST'])
|
30 |
def predict():
|
31 |
+
global client
|
32 |
+
if not client:
|
33 |
+
client = Client(base_gradio_url)
|
34 |
+
|
35 |
data = request.get_json()
|
36 |
|
37 |
base64Image = data['data'][0]
|
|
|
40 |
seed = data['data'][3]
|
41 |
|
42 |
b64meta, b64_data = base64Image.split(',')
|
43 |
+
|
44 |
+
image_path = save_base64_image(b64_data)
|
45 |
+
|
46 |
+
result = client.predict(
|
47 |
+
image_path, prompt, steps, seed, fn_index=0
|
48 |
+
)
|
49 |
+
|
50 |
+
return b64meta + ',' + encode_image_to_base64(result)
|
51 |
|
52 |
|
53 |
if __name__ == '__main__':
|
54 |
app.run(host='0.0.0.0', port=int(
|
55 |
+
os.environ.get('PORT', 8000)), debug=True)
|
gradio-app.py
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
from PIL import Image
|
2 |
-
from io import BytesIO
|
3 |
-
import base64
|
4 |
-
import os
|
5 |
-
|
6 |
-
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
7 |
-
from diffusers.utils import load_image
|
8 |
-
import torch
|
9 |
-
|
10 |
-
import gradio as gr
|
11 |
-
|
12 |
-
controlnet = ControlNetModel.from_pretrained("rgres/sd-controlnet-aerialdreams", torch_dtype=torch.float16)
|
13 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
14 |
-
"stabilityai/stable-diffusion-2-1-base", controlnet=controlnet, torch_dtype=torch.float16
|
15 |
-
)
|
16 |
-
|
17 |
-
pipe = pipe.to("cuda")
|
18 |
-
|
19 |
-
# CPU offloading for faster inference times
|
20 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
21 |
-
pipe.enable_model_cpu_offload()
|
22 |
-
|
23 |
-
def generate_map(image, prompt, steps, seed):
|
24 |
-
#image = Image.open(BytesIO(base64.b64decode(image_base64)))
|
25 |
-
generator = torch.manual_seed(seed)
|
26 |
-
|
27 |
-
image = Image.fromarray(image)
|
28 |
-
|
29 |
-
image = pipe(
|
30 |
-
prompt=prompt,
|
31 |
-
num_inference_steps=steps,
|
32 |
-
image=image
|
33 |
-
).images[0]
|
34 |
-
|
35 |
-
return image
|
36 |
-
|
37 |
-
demo = gr.Interface(
|
38 |
-
fn=generate_map,
|
39 |
-
inputs=["image", "text", gr.Slider(0,100), "number"],
|
40 |
-
outputs="image")
|
41 |
-
|
42 |
-
demo.launch(server_port=int(os.getenv('GRADIO_PORT', '7860')))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gradio-mock-app.py
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
from PIL import Image
|
2 |
-
from io import BytesIO
|
3 |
-
import base64
|
4 |
-
import gradio as gr
|
5 |
-
|
6 |
-
def generate_map(image, prompt, steps, seed):
|
7 |
-
return image
|
8 |
-
|
9 |
-
with gr.Blocks() as demo:
|
10 |
-
button = gr.Button(label="Generate Image")
|
11 |
-
button.click(fn=generate_map, inputs=[gr.Image(), gr.Textbox(), gr.Number(), gr.Number()], outputs=gr.Image())
|
12 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
launch_full_interface.ipynb
DELETED
@@ -1,107 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"attachments": {},
|
5 |
-
"cell_type": "markdown",
|
6 |
-
"metadata": {
|
7 |
-
"colab_type": "text",
|
8 |
-
"id": "view-in-github"
|
9 |
-
},
|
10 |
-
"source": [
|
11 |
-
"<a href=\"https://colab.research.google.com/github/RubenGres/Drawing2Map-hfspace/blob/main/Launch_interface.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
12 |
-
]
|
13 |
-
},
|
14 |
-
{
|
15 |
-
"cell_type": "code",
|
16 |
-
"execution_count": null,
|
17 |
-
"metadata": {
|
18 |
-
"id": "hsn_87UXrUn5"
|
19 |
-
},
|
20 |
-
"outputs": [],
|
21 |
-
"source": [
|
22 |
-
"!git clone https://github.com/RubenGres/Drawing2Map-hfspace.git\n",
|
23 |
-
"%cd Drawing2Map-hfspace/ui"
|
24 |
-
]
|
25 |
-
},
|
26 |
-
{
|
27 |
-
"cell_type": "code",
|
28 |
-
"execution_count": null,
|
29 |
-
"metadata": {
|
30 |
-
"id": "uVUasUqwr_Br"
|
31 |
-
},
|
32 |
-
"outputs": [],
|
33 |
-
"source": [
|
34 |
-
"!pip install -r requirements.txt\n",
|
35 |
-
"!npm install -g localtunnel"
|
36 |
-
]
|
37 |
-
},
|
38 |
-
{
|
39 |
-
"cell_type": "code",
|
40 |
-
"execution_count": null,
|
41 |
-
"metadata": {
|
42 |
-
"id": "9OIMlcM9OQWk"
|
43 |
-
},
|
44 |
-
"outputs": [],
|
45 |
-
"source": [
|
46 |
-
"!export URL_GRADIO='http://localhost:7860'"
|
47 |
-
]
|
48 |
-
},
|
49 |
-
{
|
50 |
-
"cell_type": "code",
|
51 |
-
"execution_count": null,
|
52 |
-
"metadata": {
|
53 |
-
"id": "yhLLdro5s-rf"
|
54 |
-
},
|
55 |
-
"outputs": [],
|
56 |
-
"source": [
|
57 |
-
"!echo \" \"\n",
|
58 |
-
"!echo \"Click the next link and when prompted enter:\"\n",
|
59 |
-
"!curl ipv4.icanhazip.com\n",
|
60 |
-
"!echo \" \"\n",
|
61 |
-
"!lt --port 8000 & make run-prod"
|
62 |
-
]
|
63 |
-
},
|
64 |
-
{
|
65 |
-
"cell_type": "code",
|
66 |
-
"execution_count": null,
|
67 |
-
"metadata": {
|
68 |
-
"colab": {
|
69 |
-
"base_uri": "https://localhost:8080/"
|
70 |
-
},
|
71 |
-
"id": "G2USPEr_4YOm",
|
72 |
-
"outputId": "36de5b2b-0cf7-410b-a225-2869138e5523"
|
73 |
-
},
|
74 |
-
"outputs": [
|
75 |
-
{
|
76 |
-
"name": "stdout",
|
77 |
-
"output_type": "stream",
|
78 |
-
"text": [
|
79 |
-
"killall python\n",
|
80 |
-
"python: no process found\n",
|
81 |
-
"make: *** [Makefile:20: stop-server] Error 1\n"
|
82 |
-
]
|
83 |
-
}
|
84 |
-
],
|
85 |
-
"source": [
|
86 |
-
"!make stop-server"
|
87 |
-
]
|
88 |
-
}
|
89 |
-
],
|
90 |
-
"metadata": {
|
91 |
-
"accelerator": "GPU",
|
92 |
-
"colab": {
|
93 |
-
"include_colab_link": true,
|
94 |
-
"provenance": []
|
95 |
-
},
|
96 |
-
"gpuClass": "standard",
|
97 |
-
"kernelspec": {
|
98 |
-
"display_name": "Python 3",
|
99 |
-
"name": "python3"
|
100 |
-
},
|
101 |
-
"language_info": {
|
102 |
-
"name": "python"
|
103 |
-
}
|
104 |
-
},
|
105 |
-
"nbformat": 4,
|
106 |
-
"nbformat_minor": 0
|
107 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
main.py
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
import subprocess
|
2 |
-
|
3 |
-
subprocess.run(["make", "run-prod"], shell=False)
|
|
|
|
|
|
|
|