Spaces:
Sleeping
Sleeping
import streamlit as st | |
st.title('Model Selection') | |
# Introduction | |
st.write("Select the embedding model and the large language model (LLM) for processing.") | |
# Embedding Model Selection | |
embedding_models = ["thenlper/gte-small", "sentence-transformers/all-MiniLM-L6-v2", "other"] | |
selected_embedding_model = st.selectbox("Select Embedding Model", options=embedding_models) | |
# LLM Model Selection | |
llm_models = ["mistralai/Mistral-7B-Instruct-v0.2", "gpt-3.5-turbo", "other"] | |
selected_llm_model = st.selectbox("Select LLM Model", options=llm_models) | |
# Display selections (for demonstration) | |
st.write("Selected Embedding Model:", selected_embedding_model) | |
st.write("Selected LLM Model:", selected_llm_model) | |
# Configuration options for the selected models | |
st.header("Model Configuration") | |
# Embedding Model Configuration (example) | |
if selected_embedding_model == "thenlper/gte-small": | |
# Placeholder for model-specific configuration options | |
st.write("No additional configuration required for this model.") | |
else: | |
# Configuration for other models | |
st.write("Configuration options for other models will appear here.") | |
# LLM Model Configuration (example) | |
if selected_llm_model == "mistralai/Mistral-7B-Instruct-v0.2": | |
max_tokens = st.slider("Max Tokens", min_value=100, max_value=1000, value=250) | |
temperature = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.7, step=0.01) | |
else: | |
# Configuration for other models | |
st.write("Configuration options for other models will appear here.") | |
# Save model selections and configurations | |
if st.button("Save Model Configuration"): | |
st.session_state['selected_embedding_model'] = selected_embedding_model | |
st.session_state['selected_llm_model'] = selected_llm_model | |
# Assuming configurations are more complex and vary per model, you might want to store them differently | |
st.session_state['llm_model_config'] = {"max_tokens": max_tokens, "temperature": temperature} | |
st.success("Model configurations saved.") | |
if st.button('Proceed to encoding vector storage'): | |
st.switch_page('pages/04_encoding_storage.py') |