File size: 15,014 Bytes
9346f1c 4596a70 9346f1c 4596a70 35a0978 4596a70 db6f218 1f60a20 9346f1c 1f60a20 a460f7a 1f60a20 0a3d32f 10f9b3c 0a3d32f 10f9b3c f742519 a885f09 f742519 9346f1c 1f60a20 9346f1c a885f09 9346f1c f742519 9346f1c f90ad24 9346f1c 614ee1f 9346f1c 1f60a20 a885f09 db6f218 1f60a20 b2c063a a885f09 1363c8a a885f09 9346f1c 614ee1f 1f60a20 9346f1c 614ee1f db6f218 614ee1f 07bfeca d3fbe10 a885f09 07bfeca d3fbe10 a885f09 07bfeca 614ee1f 35a0978 10f9b3c 35a0978 10f9b3c 1363c8a 9346f1c a885f09 1f60a20 614ee1f 1f60a20 a885f09 1f60a20 614ee1f 1f60a20 1363c8a a885f09 1f60a20 614ee1f db6f218 1f60a20 b2c063a 614ee1f 1f60a20 a885f09 1f60a20 614ee1f a885f09 1f60a20 1363c8a 1f60a20 9346f1c 1363c8a 1f60a20 a885f09 b2c063a 1f60a20 b2c063a 1f60a20 614ee1f 1f60a20 614ee1f 1f60a20 85dbbc4 1f60a20 b2c063a a095268 a885f09 85dbbc4 f742519 614ee1f b2c063a a885f09 85dbbc4 f742519 a885f09 1f60a20 614ee1f 1f60a20 85dbbc4 614ee1f 1f60a20 614ee1f 85dbbc4 1f60a20 614ee1f f742519 1363c8a 1f60a20 614ee1f 1f60a20 a885f09 85dbbc4 f742519 1f60a20 614ee1f 1f60a20 1363c8a 614ee1f 10f9b3c 50a344f 1f60a20 01233b7 1f60a20 a885f09 07bfeca e4b25b8 a460f7a db6f218 614ee1f a460f7a db6f218 a885f09 614ee1f 50a344f 10f9b3c 9346f1c a885f09 614ee1f 9346f1c a885f09 07bfeca 614ee1f a885f09 35a0978 1363c8a 35a0978 db6f218 1363c8a 35a0978 1363c8a a885f09 614ee1f 1f60a20 a885f09 1363c8a a885f09 614ee1f 1f60a20 b2c063a 614ee1f b2c063a a885f09 db6f218 b2c063a db6f218 614ee1f 1f60a20 35a0978 85dbbc4 a885f09 10f9b3c 9567fa6 10f9b3c 01233b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
import os
import json
import numpy as np
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from content import CHANGELOG_TEXT
from huggingface_hub import Repository, HfApi
from transformers import AutoConfig
from utils import get_eval_results_dicts, make_clickable_model
# clone / pull the lmeh eval data
H4_TOKEN = os.environ.get("H4_TOKEN", None)
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", None))
api = HfApi()
def restart_space():
api.restart_space(repo_id="HuggingFaceH4/open_llm_leaderboard", token=H4_TOKEN)
def get_all_requested_models(requested_models_dir):
depth = 1
file_names = []
for root, dirs, files in os.walk(requested_models_dir):
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
if current_depth == depth:
file_names.extend([os.path.join(root, file) for file in files])
return set([file_name.lower().split("./evals/")[1] for file_name in file_names])
repo = None
requested_models = None
if H4_TOKEN:
print("pulling repo")
# try:
# shutil.rmtree("./evals/")
# except:
# pass
repo = Repository(
local_dir="./evals/",
clone_from=LMEH_REPO,
use_auth_token=H4_TOKEN,
repo_type="dataset",
)
repo.git_pull()
requested_models_dir = "./evals/eval_requests"
requested_models = get_all_requested_models(requested_models_dir)
# parse the results
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
def load_results(model, benchmark, metric):
file_path = os.path.join("evals", model, f"{model}-eval_{benchmark}.json")
if not os.path.exists(file_path):
return 0.0, None
with open(file_path) as fp:
data = json.load(fp)
accs = np.array([v[metric] for k, v in data["results"].items()])
mean_acc = np.mean(accs)
return mean_acc, data["config"]["model_args"]
COLS = [
"Model",
"Revision",
"Average ⬆️",
"ARC (25-shot) ⬆️",
"HellaSwag (10-shot) ⬆️",
"MMLU (5-shot) ⬆️",
"TruthfulQA (0-shot) ⬆️",
]
TYPES = [
"markdown",
"str",
"number",
"number",
"number",
"number",
"number",
]
if not IS_PUBLIC:
COLS.insert(2, "8bit")
TYPES.insert(2, "bool")
EVAL_COLS = ["model", "revision", "private", "8bit_eval", "is_delta_weight", "status"]
EVAL_TYPES = ["markdown", "str", "bool", "bool", "bool", "str"]
BENCHMARK_COLS = [
"ARC (25-shot) ⬆️",
"HellaSwag (10-shot) ⬆️",
"MMLU (5-shot) ⬆️",
"TruthfulQA (0-shot) ⬆️",
]
def has_no_nan_values(df, columns):
return df[columns].notna().all(axis=1)
def has_nan_values(df, columns):
return df[columns].isna().any(axis=1)
def get_leaderboard():
if repo:
print("pulling changes")
repo.git_pull()
all_data = get_eval_results_dicts(IS_PUBLIC)
if not IS_PUBLIC:
gpt4_values = {
"Model": f'<a target="_blank" href=https://arxiv.org/abs/2303.08774 style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">gpt4</a>',
"Revision": "tech report",
"8bit": None,
"Average ⬆️": 84.3,
"ARC (25-shot) ⬆️": 96.3,
"HellaSwag (10-shot) ⬆️": 95.3,
"MMLU (5-shot) ⬆️": 86.4,
"TruthfulQA (0-shot) ⬆️": 59.0,
}
all_data.append(gpt4_values)
gpt35_values = {
"Model": f'<a target="_blank" href=https://arxiv.org/abs/2303.08774 style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">gpt3.5</a>',
"Revision": "tech report",
"8bit": None,
"Average ⬆️": 71.9,
"ARC (25-shot) ⬆️": 85.2,
"HellaSwag (10-shot) ⬆️": 85.5,
"MMLU (5-shot) ⬆️": 70.0,
"TruthfulQA (0-shot) ⬆️": 47.0,
}
all_data.append(gpt35_values)
base_line = {
"Model": "<p>Baseline</p>",
"Revision": "N/A",
"8bit": None,
"Average ⬆️": 25.0,
"ARC (25-shot) ⬆️": 25.0,
"HellaSwag (10-shot) ⬆️": 25.0,
"MMLU (5-shot) ⬆️": 25.0,
"TruthfulQA (0-shot) ⬆️": 25.0,
}
all_data.append(base_line)
df = pd.DataFrame.from_records(all_data)
df = df.sort_values(by=["Average ⬆️"], ascending=False)
df = df[COLS]
# get incomplete models
incomplete_models = df[has_nan_values(df, BENCHMARK_COLS)]["Model"].tolist()
print(
[
model.split(" style")[0].split("https://huggingface.co/")[1]
for model in incomplete_models
]
)
# filter out if any of the benchmarks have not been produced
df = df[has_no_nan_values(df, BENCHMARK_COLS)]
return df
def get_eval_table():
if repo:
print("pulling changes for eval")
repo.git_pull()
entries = [
entry
for entry in os.listdir("evals/eval_requests")
if not entry.startswith(".")
]
all_evals = []
for entry in entries:
# print(entry)
if ".json" in entry:
file_path = os.path.join("evals/eval_requests", entry)
with open(file_path) as fp:
data = json.load(fp)
data["# params"] = "unknown"
data["model"] = make_clickable_model(data["model"])
data["revision"] = data.get("revision", "main")
all_evals.append(data)
else:
# this is a folder
sub_entries = [
e
for e in os.listdir(f"evals/eval_requests/{entry}")
if not e.startswith(".")
]
for sub_entry in sub_entries:
file_path = os.path.join("evals/eval_requests", entry, sub_entry)
with open(file_path) as fp:
data = json.load(fp)
# data["# params"] = get_n_params(data["model"])
data["model"] = make_clickable_model(data["model"])
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] == "PENDING"]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"] == "FINISHED"]
df_pending = pd.DataFrame.from_records(pending_list)
df_running = pd.DataFrame.from_records(running_list)
df_finished = pd.DataFrame.from_records(finished_list)
return df_finished[EVAL_COLS], df_running[EVAL_COLS], df_pending[EVAL_COLS]
leaderboard = get_leaderboard()
finished_eval_queue, running_eval_queue, pending_eval_queue = get_eval_table()
def is_model_on_hub(model_name, revision) -> bool:
try:
config = AutoConfig.from_pretrained(model_name, revision=revision)
return True
except Exception as e:
print("Could not get the model config from the hub")
print(e)
return False
def add_new_eval(
model: str,
base_model: str,
revision: str,
is_8_bit_eval: bool,
private: bool,
is_delta_weight: bool,
):
# check the model actually exists before adding the eval
if revision == "":
revision = "main"
if is_delta_weight and not is_model_on_hub(base_model, revision):
error_message = f'Base model "{base_model}" was not found on hub!'
print(error_message)
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error_message}</p>"
if not is_model_on_hub(model, revision):
error_message = f'Model "{model}"was not found on hub!'
print(error_message)
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error_message}</p>"
print("adding new eval")
eval_entry = {
"model": model,
"base_model": base_model,
"revision": revision,
"private": private,
"8bit_eval": is_8_bit_eval,
"is_delta_weight": is_delta_weight,
"status": "PENDING",
}
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
OUT_DIR = f"eval_requests/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{is_8_bit_eval}_{is_delta_weight}.json"
# Check for duplicate submission
if out_path.lower() in requested_models:
duplicate_request_message = "This model has been already submitted."
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{duplicate_request_message}</p>"
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
api.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path,
repo_id=LMEH_REPO,
token=H4_TOKEN,
repo_type="dataset",
)
success_message = "Your request has been submitted to the evaluation queue!"
return f"<p style='color: green; font-size: 20px; text-align: center;'>{success_message}</p>"
def refresh():
leaderboard = get_leaderboard()
finished_eval_queue, running_eval_queue, pending_eval_queue = get_eval_table()
get_leaderboard(), get_eval_table()
return leaderboard, finished_eval_queue, running_eval_queue, pending_eval_queue
custom_css = """
#changelog-text {
font-size: 18px !important;
}
"""
demo = gr.Blocks(css=custom_css)
with demo:
with gr.Row():
gr.Markdown(
f"""
# 🤗 Open LLM Leaderboard
<font size="4">With the plethora of large language models (LLMs) and chatbots being released week upon week, often with grandiose claims of their performance, it can be hard to filter out the genuine progress that is being made by the open-source community and which model is the current state of the art. The 🤗 Open LLM Leaderboard aims to track, rank and evaluate LLMs and chatbots as they are released. We evaluate models on 4 key benchmarks from the <a href="https://github.com/EleutherAI/lm-evaluation-harness" target="_blank"> Eleuther AI Language Model Evaluation Harness </a>, a unified framework to test generative language models on a large number of different evaluation tasks. A key advantage of this leaderboard is that anyone from the community can submit a model for automated evaluation on the 🤗 GPU cluster, as long as it is a 🤗 Transformers model with weights on the Hub. We also support evaluation of models with delta-weights for non-commercial licensed models, such as LLaMa.
Evaluation is performed against 4 popular benchmarks:
- <a href="https://arxiv.org/abs/1803.05457" target="_blank"> AI2 Reasoning Challenge </a> (25-shot) - a set of grade-school science questions.
- <a href="https://arxiv.org/abs/1905.07830" target="_blank"> HellaSwag </a> (10-shot) - a test of commonsense inference, which is easy for humans (~95%) but challenging for SOTA models.
- <a href="https://arxiv.org/abs/2009.03300" target="_blank"> MMLU </a> (5-shot) - a test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more.
- <a href="https://arxiv.org/abs/2109.07958" target="_blank"> TruthfulQA </a> (0-shot) - a benchmark to measure whether a language model is truthful in generating answers to questions.
We chose these benchmarks as they test a variety of reasoning and general knowledge across a wide variety of fields in 0-shot and few-shot settings. </font>
"""
)
with gr.Accordion("CHANGELOG", open=False):
changelog = gr.Markdown(CHANGELOG_TEXT, elem_id="changelog-text")
with gr.Row():
leaderboard_table = gr.components.Dataframe(
value=leaderboard, headers=COLS, datatype=TYPES, max_rows=5
)
with gr.Row():
gr.Markdown(
f"""
# Evaluation Queue for the 🤗 Open LLM Leaderboard, these models will be automatically evaluated on the 🤗 cluster
"""
)
with gr.Accordion("✅ Finished Evaluations", open=False):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
max_rows=5,
)
with gr.Accordion("🔄 Running Evaluation Queue", open=False):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
max_rows=5,
)
with gr.Accordion("⏳ Pending Evaluation Queue", open=False):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
max_rows=5,
)
with gr.Row():
refresh_button = gr.Button("Refresh")
refresh_button.click(
refresh,
inputs=[],
outputs=[
leaderboard_table,
finished_eval_table,
running_eval_table,
pending_eval_table,
],
)
with gr.Accordion("Submit a new model for evaluation"):
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="revision", placeholder="main")
with gr.Column():
is_8bit_toggle = gr.Checkbox(
False, label="8 bit eval", visible=not IS_PUBLIC
)
private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC)
is_delta_weight = gr.Checkbox(False, label="Delta weights")
base_model_name_textbox = gr.Textbox(label="base model (for delta)")
with gr.Row():
submit_button = gr.Button("Submit Eval")
with gr.Row():
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
is_8bit_toggle,
private,
is_delta_weight,
],
submission_result,
)
# demo.load(
# refresh,
# inputs=[],
# outputs=[
# leaderboard_table,
# finished_eval_table,
# running_eval_table,
# pending_eval_table,
# ],
# )
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, 'interval', seconds=1200)
scheduler.start()
demo.launch()
|