caselawqa_leaderboard / src /plots /plot_results.py
Clémentine
reorg to simplify nav in code base
6e56e0d
raw
history blame
8.85 kB
import pandas as pd
import plotly.express as px
from plotly.graph_objs import Figure
import pickle
from datetime import datetime, timezone
from typing import List, Dict, Tuple, Any
from src.get_model_info.hardocded_metadata.flags import FLAGGED_MODELS
# Average ⬆️ human baseline is 0.897 (source: averaging human baselines below)
# ARC human baseline is 0.80 (source: https://lab42.global/arc/)
# HellaSwag human baseline is 0.95 (source: https://deepgram.com/learn/hellaswag-llm-benchmark-guide)
# MMLU human baseline is 0.898 (source: https://openreview.net/forum?id=d7KBjmI3GmQ)
# TruthfulQA human baseline is 0.94(source: https://arxiv.org/pdf/2109.07958.pdf)
# Define the human baselines
HUMAN_BASELINES = {
"Average ⬆️": 0.897 * 100,
"ARC": 0.80 * 100,
"HellaSwag": 0.95 * 100,
"MMLU": 0.898 * 100,
"TruthfulQA": 0.94 * 100,
}
def to_datetime(model_info: Tuple[str, Any]) -> datetime:
"""
Converts the lastModified attribute of the object to datetime.
:param model_info: A tuple containing the name and object.
The object must have a lastModified attribute
with a string representing the date and time.
:return: A datetime object converted from the lastModified attribute of the input object.
"""
name, obj = model_info
return datetime.strptime(obj.lastModified, "%Y-%m-%dT%H:%M:%S.%fZ").replace(tzinfo=timezone.utc)
def join_model_info_with_results(results_df: pd.DataFrame) -> pd.DataFrame:
"""
Integrates model information with the results DataFrame by matching 'Model sha'.
:param results_df: A DataFrame containing results information including 'Model sha' column.
:return: A DataFrame with updated 'Results Date' columns, which are synchronized with model information.
"""
# copy dataframe to avoid modifying the original
df = results_df.copy(deep=True)
# Filter out FLAGGED_MODELS to ensure graph is not skewed by mistakes
df = df[~df["model_name_for_query"].isin(FLAGGED_MODELS.keys())].reset_index(drop=True)
# load cache from disk
try:
with open("model_info_cache.pkl", "rb") as f:
model_info_cache = pickle.load(f)
except (EOFError, FileNotFoundError):
model_info_cache = {}
# Sort date strings using datetime objects as keys
sorted_dates = sorted(list(model_info_cache.items()), key=to_datetime, reverse=True)
df["Results Date"] = datetime.now().replace(tzinfo=timezone.utc)
# Define the date format string
date_format = "%Y-%m-%dT%H:%M:%S.%fZ"
# Iterate over sorted_dates and update the dataframe
for name, obj in sorted_dates:
# Convert the lastModified string to a datetime object
last_modified_datetime = datetime.strptime(obj.lastModified, date_format).replace(tzinfo=timezone.utc)
# Update the "Results Date" column where "Model sha" equals obj.sha
df.loc[df["Model sha"] == obj.sha, "Results Date"] = last_modified_datetime
return df
def create_scores_df(results_df: pd.DataFrame) -> pd.DataFrame:
"""
Generates a DataFrame containing the maximum scores until each result date.
:param results_df: A DataFrame containing result information including metric scores and result dates.
:return: A new DataFrame containing the maximum scores until each result date for every metric.
"""
# Step 1: Ensure 'Results Date' is in datetime format and sort the DataFrame by it
results_df["Results Date"] = pd.to_datetime(results_df["Results Date"])
results_df.sort_values(by="Results Date", inplace=True)
# Step 2: Initialize the scores dictionary
scores = {
"Average ⬆️": [],
"ARC": [],
"HellaSwag": [],
"MMLU": [],
"TruthfulQA": [],
"Result Date": [],
"Model Name": [],
}
# Step 3: Iterate over the rows of the DataFrame and update the scores dictionary
for i, row in results_df.iterrows():
date = row["Results Date"]
for column in scores.keys():
if column == "Result Date":
if not scores[column] or scores[column][-1] <= date:
scores[column].append(date)
continue
if column == "Model Name":
scores[column].append(row["model_name_for_query"])
continue
current_max = scores[column][-1] if scores[column] else float("-inf")
scores[column].append(max(current_max, row[column]))
# Step 4: Convert the dictionary to a DataFrame
return pd.DataFrame(scores)
def create_plot_df(scores_df: pd.DataFrame) -> pd.DataFrame:
"""
Transforms the scores DataFrame into a new format suitable for plotting.
:param scores_df: A DataFrame containing metric scores and result dates.
:return: A new DataFrame reshaped for plotting purposes.
"""
# Sample columns
cols = ["Average ⬆️", "ARC", "HellaSwag", "MMLU", "TruthfulQA"]
# Initialize the list to store DataFrames
dfs = []
# Iterate over the cols and create a new DataFrame for each column
for col in cols:
d = scores_df[[col, "Model Name", "Result Date"]].copy().reset_index(drop=True)
d["Metric Name"] = col
d.rename(columns={col: "Metric Value"}, inplace=True)
dfs.append(d)
# Concatenate all the created DataFrames
concat_df = pd.concat(dfs, ignore_index=True)
# Sort values by 'Result Date'
concat_df.sort_values(by="Result Date", inplace=True)
concat_df.reset_index(drop=True, inplace=True)
# Drop duplicates based on 'Metric Name' and 'Metric Value' and keep the first (earliest) occurrence
concat_df.drop_duplicates(subset=["Metric Name", "Metric Value"], keep="first", inplace=True)
concat_df.reset_index(drop=True, inplace=True)
return concat_df
def create_metric_plot_obj(
df: pd.DataFrame, metrics: List[str], human_baselines: Dict[str, float], title: str
) -> Figure:
"""
Create a Plotly figure object with lines representing different metrics
and horizontal dotted lines representing human baselines.
:param df: The DataFrame containing the metric values, names, and dates.
:param metrics: A list of strings representing the names of the metrics
to be included in the plot.
:param human_baselines: A dictionary where keys are metric names
and values are human baseline values for the metrics.
:param title: A string representing the title of the plot.
:return: A Plotly figure object with lines representing metrics and
horizontal dotted lines representing human baselines.
"""
# Filter the DataFrame based on the specified metrics
df = df[df["Metric Name"].isin(metrics)]
# Filter the human baselines based on the specified metrics
filtered_human_baselines = {k: v for k, v in human_baselines.items() if k in metrics}
# Create a line figure using plotly express with specified markers and custom data
fig = px.line(
df,
x="Result Date",
y="Metric Value",
color="Metric Name",
markers=True,
custom_data=["Metric Name", "Metric Value", "Model Name"],
title=title,
)
# Update hovertemplate for better hover interaction experience
fig.update_traces(
hovertemplate="<br>".join(
[
"Model Name: %{customdata[2]}",
"Metric Name: %{customdata[0]}",
"Date: %{x}",
"Metric Value: %{y}",
]
)
)
# Update the range of the y-axis
fig.update_layout(yaxis_range=[0, 100])
# Create a dictionary to hold the color mapping for each metric
metric_color_mapping = {}
# Map each metric name to its color in the figure
for trace in fig.data:
metric_color_mapping[trace.name] = trace.line.color
# Iterate over filtered human baselines and add horizontal lines to the figure
for metric, value in filtered_human_baselines.items():
color = metric_color_mapping.get(metric, "blue") # Retrieve color from mapping; default to blue if not found
location = "top left" if metric == "HellaSwag" else "bottom left" # Set annotation position
# Add horizontal line with matched color and positioned annotation
fig.add_hline(
y=value,
line_dash="dot",
annotation_text=f"{metric} human baseline",
annotation_position=location,
annotation_font_size=10,
annotation_font_color=color,
line_color=color,
)
return fig
# Example Usage:
# human_baselines dictionary is defined.
# chart = create_metric_plot_obj(scores_df, ["ARC", "HellaSwag", "MMLU", "TruthfulQA"], human_baselines, "Graph Title")