|
import json |
|
import os |
|
from datetime import datetime, timezone |
|
|
|
|
|
import gradio as gr |
|
import numpy as np |
|
import pandas as pd |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
from huggingface_hub import HfApi |
|
from transformers import AutoConfig |
|
|
|
from src.auto_leaderboard.get_model_metadata import apply_metadata |
|
from src.assets.text_content import * |
|
from src.auto_leaderboard.load_results import get_eval_results_dicts, make_clickable_model |
|
from src.assets.hardcoded_evals import gpt4_values, gpt35_values, baseline |
|
from src.assets.css_html_js import custom_css, get_window_url_params |
|
from src.utils_display import AutoEvalColumn, EvalQueueColumn, EloEvalColumn, fields, styled_error, styled_warning, styled_message |
|
from src.init import load_all_info_from_hub |
|
|
|
|
|
H4_TOKEN = os.environ.get("H4_TOKEN", None) |
|
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations" |
|
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True)) |
|
ADD_PLOTS = False |
|
|
|
EVAL_REQUESTS_PATH = "auto_evals/eval_requests" |
|
|
|
api = HfApi() |
|
|
|
|
|
def restart_space(): |
|
api.restart_space( |
|
repo_id="HuggingFaceH4/open_llm_leaderboard", token=H4_TOKEN |
|
) |
|
|
|
auto_eval_repo, requested_models = load_all_info_from_hub(LMEH_REPO) |
|
|
|
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] |
|
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden] |
|
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] |
|
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] |
|
|
|
if not IS_PUBLIC: |
|
COLS.insert(2, AutoEvalColumn.is_8bit.name) |
|
TYPES.insert(2, AutoEvalColumn.is_8bit.type) |
|
|
|
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] |
|
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] |
|
|
|
BENCHMARK_COLS = [c.name for c in [AutoEvalColumn.arc, AutoEvalColumn.hellaswag, AutoEvalColumn.mmlu, AutoEvalColumn.truthfulqa]] |
|
|
|
|
|
def has_no_nan_values(df, columns): |
|
return df[columns].notna().all(axis=1) |
|
|
|
|
|
def has_nan_values(df, columns): |
|
return df[columns].isna().any(axis=1) |
|
|
|
|
|
def get_leaderboard_df(): |
|
if auto_eval_repo: |
|
print("Pulling evaluation results for the leaderboard.") |
|
auto_eval_repo.git_pull() |
|
|
|
all_data = get_eval_results_dicts(IS_PUBLIC) |
|
|
|
if not IS_PUBLIC: |
|
all_data.append(gpt4_values) |
|
all_data.append(gpt35_values) |
|
|
|
all_data.append(baseline) |
|
apply_metadata(all_data) |
|
|
|
df = pd.DataFrame.from_records(all_data) |
|
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) |
|
df = df[COLS] |
|
|
|
|
|
df = df[has_no_nan_values(df, BENCHMARK_COLS)] |
|
return df |
|
|
|
|
|
def get_evaluation_queue_df(): |
|
|
|
if auto_eval_repo: |
|
print("Pulling changes for the evaluation queue.") |
|
auto_eval_repo.git_pull() |
|
|
|
entries = [ |
|
entry |
|
for entry in os.listdir(EVAL_REQUESTS_PATH) |
|
if not entry.startswith(".") |
|
] |
|
all_evals = [] |
|
|
|
for entry in entries: |
|
if ".json" in entry: |
|
file_path = os.path.join(EVAL_REQUESTS_PATH, entry) |
|
with open(file_path) as fp: |
|
data = json.load(fp) |
|
|
|
data["# params"] = "unknown" |
|
data["model"] = make_clickable_model(data["model"]) |
|
data["revision"] = data.get("revision", "main") |
|
|
|
all_evals.append(data) |
|
else: |
|
|
|
sub_entries = [ |
|
e |
|
for e in os.listdir(f"{EVAL_REQUESTS_PATH}/{entry}") |
|
if not e.startswith(".") |
|
] |
|
for sub_entry in sub_entries: |
|
file_path = os.path.join(EVAL_REQUESTS_PATH, entry, sub_entry) |
|
with open(file_path) as fp: |
|
data = json.load(fp) |
|
|
|
|
|
data["model"] = make_clickable_model(data["model"]) |
|
all_evals.append(data) |
|
|
|
pending_list = [e for e in all_evals if e["status"] == "PENDING"] |
|
running_list = [e for e in all_evals if e["status"] == "RUNNING"] |
|
finished_list = [e for e in all_evals if e["status"] == "FINISHED"] |
|
df_pending = pd.DataFrame.from_records(pending_list) |
|
df_running = pd.DataFrame.from_records(running_list) |
|
df_finished = pd.DataFrame.from_records(finished_list) |
|
return df_finished[EVAL_COLS], df_running[EVAL_COLS], df_pending[EVAL_COLS] |
|
|
|
|
|
|
|
original_df = get_leaderboard_df() |
|
leaderboard_df = original_df.copy() |
|
( |
|
finished_eval_queue_df, |
|
running_eval_queue_df, |
|
pending_eval_queue_df, |
|
) = get_evaluation_queue_df() |
|
|
|
def is_model_on_hub(model_name, revision) -> bool: |
|
try: |
|
AutoConfig.from_pretrained(model_name, revision=revision) |
|
return True, None |
|
|
|
except ValueError as e: |
|
return False, "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard." |
|
|
|
except Exception as e: |
|
print("Could not get the model config from the hub.: \n", e) |
|
return False, "was not found on hub!" |
|
|
|
|
|
def add_new_eval( |
|
model: str, |
|
base_model: str, |
|
revision: str, |
|
is_8_bit_eval: bool, |
|
private: bool, |
|
is_delta_weight: bool, |
|
): |
|
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") |
|
|
|
|
|
if revision == "": |
|
revision = "main" |
|
|
|
if is_delta_weight: |
|
base_model_on_hub, error = is_model_on_hub(base_model, revision) |
|
if not base_model_on_hub: |
|
return styled_error(f'Base model "{base_model}" {error}') |
|
|
|
model_on_hub, error = is_model_on_hub(model, revision) |
|
if not model_on_hub: |
|
return styled_error(f'Model "{model}" {error}') |
|
|
|
print("adding new eval") |
|
|
|
eval_entry = { |
|
"model": model, |
|
"base_model": base_model, |
|
"revision": revision, |
|
"private": private, |
|
"8bit_eval": is_8_bit_eval, |
|
"is_delta_weight": is_delta_weight, |
|
"status": "PENDING", |
|
"submitted_time": current_time, |
|
} |
|
|
|
user_name = "" |
|
model_path = model |
|
if "/" in model: |
|
user_name = model.split("/")[0] |
|
model_path = model.split("/")[1] |
|
|
|
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" |
|
os.makedirs(OUT_DIR, exist_ok=True) |
|
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{is_8_bit_eval}_{is_delta_weight}.json" |
|
|
|
|
|
if out_path.split("eval_requests/")[1].lower() in requested_models: |
|
return styled_warning("This model has been already submitted.") |
|
|
|
with open(out_path, "w") as f: |
|
f.write(json.dumps(eval_entry)) |
|
|
|
api.upload_file( |
|
path_or_fileobj=out_path, |
|
path_in_repo=out_path, |
|
repo_id=LMEH_REPO, |
|
token=H4_TOKEN, |
|
repo_type="dataset", |
|
) |
|
|
|
return styled_message("Your request has been submitted to the evaluation queue!") |
|
|
|
|
|
def refresh(): |
|
leaderboard_df = get_leaderboard_df() |
|
( |
|
finished_eval_queue_df, |
|
running_eval_queue_df, |
|
pending_eval_queue_df, |
|
) = get_evaluation_queue_df() |
|
return ( |
|
leaderboard_df, |
|
finished_eval_queue_df, |
|
running_eval_queue_df, |
|
pending_eval_queue_df, |
|
) |
|
|
|
|
|
def search_table(df, query): |
|
filtered_df = df[df[AutoEvalColumn.dummy.name].str.contains(query, case=False)] |
|
return filtered_df |
|
|
|
|
|
def change_tab(query_param): |
|
query_param = query_param.replace("'", '"') |
|
query_param = json.loads(query_param) |
|
|
|
if ( |
|
isinstance(query_param, dict) |
|
and "tab" in query_param |
|
and query_param["tab"] == "evaluation" |
|
): |
|
return gr.Tabs.update(selected=1) |
|
else: |
|
return gr.Tabs.update(selected=0) |
|
|
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
gr.HTML(TITLE) |
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
with gr.Row(): |
|
with gr.Box(elem_id="search-bar-table-box"): |
|
search_bar = gr.Textbox( |
|
placeholder="🔍 Search your model and press ENTER...", |
|
show_label=False, |
|
elem_id="search-bar", |
|
) |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("🏅 LLM Benchmark (lite)", elem_id="llm-benchmark-tab-table", id=0): |
|
leaderboard_table_lite = gr.components.Dataframe( |
|
value=leaderboard_df[COLS_LITE], |
|
headers=COLS_LITE, |
|
datatype=TYPES_LITE, |
|
max_rows=None, |
|
elem_id="leaderboard-table-lite", |
|
) |
|
|
|
hidden_leaderboard_table_for_search_lite = gr.components.Dataframe( |
|
value=original_df[COLS_LITE], |
|
headers=COLS_LITE, |
|
datatype=TYPES_LITE, |
|
max_rows=None, |
|
visible=False, |
|
) |
|
search_bar.submit( |
|
search_table, |
|
[hidden_leaderboard_table_for_search_lite, search_bar], |
|
leaderboard_table_lite, |
|
) |
|
|
|
with gr.TabItem("📊 Extended view", elem_id="llm-benchmark-tab-table", id=1): |
|
leaderboard_table = gr.components.Dataframe( |
|
value=leaderboard_df, |
|
headers=COLS, |
|
datatype=TYPES, |
|
max_rows=None, |
|
elem_id="leaderboard-table", |
|
) |
|
|
|
|
|
hidden_leaderboard_table_for_search = gr.components.Dataframe( |
|
value=original_df, |
|
headers=COLS, |
|
datatype=TYPES, |
|
max_rows=None, |
|
visible=False, |
|
) |
|
search_bar.submit( |
|
search_table, |
|
[hidden_leaderboard_table_for_search, search_bar], |
|
leaderboard_table, |
|
) |
|
with gr.TabItem("About", elem_id="llm-benchmark-tab-table", id=2): |
|
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") |
|
with gr.Accordion("📙 Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
elem_id="citation-button", |
|
).style(show_copy_button=True) |
|
|
|
|
|
with gr.Column(): |
|
with gr.Row(): |
|
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Column(): |
|
with gr.Accordion("✅ Finished Evaluations", open=False): |
|
with gr.Row(): |
|
finished_eval_table = gr.components.Dataframe( |
|
value=finished_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
max_rows=5, |
|
) |
|
with gr.Accordion("🔄 Running Evaluation Queue", open=False): |
|
with gr.Row(): |
|
running_eval_table = gr.components.Dataframe( |
|
value=running_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
max_rows=5, |
|
) |
|
|
|
with gr.Accordion("⏳ Pending Evaluation Queue", open=False): |
|
with gr.Row(): |
|
pending_eval_table = gr.components.Dataframe( |
|
value=pending_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
max_rows=5, |
|
) |
|
|
|
with gr.Row(): |
|
refresh_button = gr.Button("Refresh") |
|
refresh_button.click( |
|
refresh, |
|
inputs=[], |
|
outputs=[ |
|
leaderboard_table, |
|
finished_eval_table, |
|
running_eval_table, |
|
pending_eval_table, |
|
], |
|
) |
|
with gr.Accordion("Submit a new model for evaluation"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
model_name_textbox = gr.Textbox(label="Model name") |
|
revision_name_textbox = gr.Textbox( |
|
label="revision", placeholder="main" |
|
) |
|
|
|
with gr.Column(): |
|
is_8bit_toggle = gr.Checkbox( |
|
False, label="8 bit eval", visible=not IS_PUBLIC |
|
) |
|
private = gr.Checkbox( |
|
False, label="Private", visible=not IS_PUBLIC |
|
) |
|
is_delta_weight = gr.Checkbox(False, label="Delta weights") |
|
base_model_name_textbox = gr.Textbox( |
|
label="base model (for delta)" |
|
) |
|
|
|
submit_button = gr.Button("Submit Eval") |
|
submission_result = gr.Markdown() |
|
submit_button.click( |
|
add_new_eval, |
|
[ |
|
model_name_textbox, |
|
base_model_name_textbox, |
|
revision_name_textbox, |
|
is_8bit_toggle, |
|
private, |
|
is_delta_weight, |
|
], |
|
submission_result, |
|
) |
|
|
|
dummy = gr.Textbox(visible=False) |
|
demo.load( |
|
change_tab, |
|
dummy, |
|
tabs, |
|
_js=get_window_url_params, |
|
) |
|
|
|
scheduler = BackgroundScheduler() |
|
scheduler.add_job(restart_space, "interval", seconds=3600) |
|
scheduler.start() |
|
demo.queue(concurrency_count=40).launch() |
|
|