Spaces:
No application file
No application file
Upload 17 files
Browse files- .gitignore +155 -0
- Dockerfile +16 -0
- LICENSE +201 -0
- README.en.md +151 -0
- flask_api.py +63 -0
- inference.py +425 -0
- inference_svs.py +237 -0
- inference_vst.py +217 -0
- poetry.lock +0 -0
- poetry.toml +2 -0
- pyproject.toml +51 -0
- requirements.txt +103 -0
- train.py +228 -0
- tst +1 -0
- 开始处理.bat +4 -0
.gitignore
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
pip-wheel-metadata/
|
24 |
+
share/python-wheels/
|
25 |
+
*.egg-info/
|
26 |
+
.installed.cfg
|
27 |
+
*.egg
|
28 |
+
MANIFEST
|
29 |
+
|
30 |
+
# PyInstaller
|
31 |
+
# Usually these files are written by a python script from a template
|
32 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
33 |
+
*.manifest
|
34 |
+
*.spec
|
35 |
+
|
36 |
+
# Installer logs
|
37 |
+
pip-log.txt
|
38 |
+
pip-delete-this-directory.txt
|
39 |
+
|
40 |
+
# Unit test / coverage reports
|
41 |
+
htmlcov/
|
42 |
+
.tox/
|
43 |
+
.nox/
|
44 |
+
.coverage
|
45 |
+
.coverage.*
|
46 |
+
.cache
|
47 |
+
nosetests.xml
|
48 |
+
coverage.xml
|
49 |
+
*.cover
|
50 |
+
*.py,cover
|
51 |
+
.hypothesis/
|
52 |
+
.pytest_cache/
|
53 |
+
|
54 |
+
# Text tool
|
55 |
+
tools/text/create_symbol_dict.py
|
56 |
+
|
57 |
+
# Translations
|
58 |
+
*.mo
|
59 |
+
*.pot
|
60 |
+
|
61 |
+
# Django stuff:
|
62 |
+
*.log
|
63 |
+
local_settings.py
|
64 |
+
db.sqlite3
|
65 |
+
db.sqlite3-journal
|
66 |
+
|
67 |
+
# Flask stuff:
|
68 |
+
instance/
|
69 |
+
.webassets-cache
|
70 |
+
|
71 |
+
# Scrapy stuff:
|
72 |
+
.scrapy
|
73 |
+
|
74 |
+
# Sphinx documentation
|
75 |
+
docs/_build/
|
76 |
+
|
77 |
+
# PyBuilder
|
78 |
+
target/
|
79 |
+
|
80 |
+
# Jupyter Notebook
|
81 |
+
.ipynb_checkpoints
|
82 |
+
|
83 |
+
# IPython
|
84 |
+
profile_default/
|
85 |
+
ipython_config.py
|
86 |
+
|
87 |
+
# pyenv
|
88 |
+
.python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
98 |
+
__pypackages__/
|
99 |
+
|
100 |
+
# Celery stuff
|
101 |
+
celerybeat-schedule
|
102 |
+
celerybeat.pid
|
103 |
+
|
104 |
+
# SageMath parsed files
|
105 |
+
*.sage.py
|
106 |
+
|
107 |
+
# Environments
|
108 |
+
.env
|
109 |
+
.venv
|
110 |
+
env/
|
111 |
+
venv/
|
112 |
+
ENV/
|
113 |
+
env.bak/
|
114 |
+
venv.bak/
|
115 |
+
|
116 |
+
# Spyder project settings
|
117 |
+
.spyderproject
|
118 |
+
.spyproject
|
119 |
+
|
120 |
+
# Rope project settings
|
121 |
+
.ropeproject
|
122 |
+
|
123 |
+
# mkdocs documentation
|
124 |
+
/site
|
125 |
+
|
126 |
+
# mypy
|
127 |
+
.mypy_cache/
|
128 |
+
.dmypy.json
|
129 |
+
dmypy.json
|
130 |
+
|
131 |
+
# Pyre type checker
|
132 |
+
.pyre/
|
133 |
+
|
134 |
+
data
|
135 |
+
dataset
|
136 |
+
.vscode
|
137 |
+
|
138 |
+
*.pt
|
139 |
+
*.pth
|
140 |
+
hifigan/model
|
141 |
+
output
|
142 |
+
lightning_logs
|
143 |
+
logs
|
144 |
+
wandb
|
145 |
+
*.ckpt
|
146 |
+
checkpoints
|
147 |
+
filelists
|
148 |
+
raw
|
149 |
+
results
|
150 |
+
|
151 |
+
configs/exp_*.py
|
152 |
+
exp_*.sh
|
153 |
+
.DS_Store
|
154 |
+
.vscode
|
155 |
+
exported
|
Dockerfile
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM nvidia/cuda:11.7.0-cudnn8-devel-ubuntu22.04 AS fish-diffusion
|
2 |
+
|
3 |
+
# Install Poetry
|
4 |
+
RUN apt-get update && apt-get install -y git curl python3 python3-pip build-essential ffmpeg libsm6 libxext6
|
5 |
+
RUN curl -sSL https://install.python-poetry.org | python3 -
|
6 |
+
ENV PATH="/root/.local/bin:${PATH}"
|
7 |
+
RUN poetry config virtualenvs.create false
|
8 |
+
|
9 |
+
# Install dependencies
|
10 |
+
WORKDIR /root
|
11 |
+
|
12 |
+
RUN pip3 install torch torchvision torchaudio
|
13 |
+
RUN git clone https://github.com/fishaudio/fish-diffusion.git && cd fish-diffusion && poetry install
|
14 |
+
|
15 |
+
WORKDIR /root/fish-diffusion
|
16 |
+
RUN python3 tools/download_nsf_hifigan.py --agree-license
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [2023] [Fish Audio]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.en.md
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<div align="center">
|
2 |
+
|
3 |
+
<img alt="LOGO" src="https://cdn.jsdelivr.net/gh/fishaudio/fish-diffusion@main/images/logo_512x512.png" width="256" height="256" />
|
4 |
+
|
5 |
+
# Fish Diffusion
|
6 |
+
|
7 |
+
<div>
|
8 |
+
<a href="https://github.com/fishaudio/fish-diffusion/actions/workflows/ci.yml">
|
9 |
+
<img alt="Build Status" src="https://img.shields.io/github/actions/workflow/status/fishaudio/fish-diffusion/ci.yml?style=flat-square&logo=GitHub">
|
10 |
+
</a>
|
11 |
+
<a href="https://hub.docker.com/r/lengyue233/fish-diffusion">
|
12 |
+
<img alt="Docker Hub" src="https://img.shields.io/docker/cloud/build/lengyue233/fish-diffusion?style=flat-square&logo=Docker&logoColor=white">
|
13 |
+
</a>
|
14 |
+
<a href="https://discord.gg/wbYSRBrW2E">
|
15 |
+
<img alt="Discord" src="https://img.shields.io/discord/1044927142900809739?color=%23738ADB&label=Discord&logo=discord&logoColor=white&style=flat-square">
|
16 |
+
</a>
|
17 |
+
</div>
|
18 |
+
|
19 |
+
</div>
|
20 |
+
|
21 |
+
------
|
22 |
+
|
23 |
+
An easy to understand TTS / SVS / SVC training framework.
|
24 |
+
|
25 |
+
> Check our [Wiki](https://fishaudio.github.io/fish-diffusion/) to get started!
|
26 |
+
|
27 |
+
[中文文档](README.md)
|
28 |
+
|
29 |
+
## Summary
|
30 |
+
Using Diffusion Model to solve different voice generating tasks. Compared with the original diffsvc repository, the advantages and disadvantages of this repository are as follows:
|
31 |
+
+ Support multi-speaker
|
32 |
+
+ The code structure of this repository is simpler and easier to understand, and all modules are decoupled
|
33 |
+
+ Support [441khz Diff Singer community vocoder](https://openvpi.github.io/vocoders/)
|
34 |
+
+ Support multi-machine multi-devices training, support half-precision training, save your training speed and memory
|
35 |
+
|
36 |
+
## Preparing the environment
|
37 |
+
The following commands need to be executed in the conda environment of python 3.10
|
38 |
+
|
39 |
+
```bash
|
40 |
+
# Install PyTorch related core dependencies, skip if installed
|
41 |
+
# Reference: https://pytorch.org/get-started/locally/
|
42 |
+
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
|
43 |
+
|
44 |
+
# Install Poetry dependency management tool, skip if installed
|
45 |
+
# Reference: https://python-poetry.org/docs/#installation
|
46 |
+
curl -sSL https://install.python-poetry.org | python3 -
|
47 |
+
|
48 |
+
# Install the project dependencies
|
49 |
+
poetry install
|
50 |
+
```
|
51 |
+
|
52 |
+
## Vocoder preparation
|
53 |
+
Fish Diffusion requires the [OPENVPI 441khz NSF-HiFiGAN](https://github.com/openvpi/vocoders/releases/tag/nsf-hifigan-v1) vocoder to generate audio.
|
54 |
+
|
55 |
+
### Automatic download
|
56 |
+
```bash
|
57 |
+
python tools/download_nsf_hifigan.py
|
58 |
+
```
|
59 |
+
|
60 |
+
If you are using the script to download the model, you can use the `--agree-license` parameter to agree to the [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) license.
|
61 |
+
|
62 |
+
```bash
|
63 |
+
python tools/download_nsf_hifigan.py --agree-license
|
64 |
+
```
|
65 |
+
|
66 |
+
### Manual download
|
67 |
+
Download and unzip `nsf_hifigan_20221211.zip` from [441khz vocoder](https://github.com/openvpi/vocoders/releases/tag/nsf-hifigan-v1)
|
68 |
+
|
69 |
+
Copy the `nsf_hifigan` folder to the `checkpoints` directory (create if not exist)
|
70 |
+
|
71 |
+
## Dataset preparation
|
72 |
+
You only need to put the dataset into the `dataset` directory in the following file structure
|
73 |
+
|
74 |
+
```shell
|
75 |
+
dataset
|
76 |
+
├───train
|
77 |
+
│ ├───xxx1-xxx1.wav
|
78 |
+
│ ├───...
|
79 |
+
│ ├───Lxx-0xx8.wav
|
80 |
+
│ └───speaker0 (Subdirectory is also supported)
|
81 |
+
│ └───xxx1-xxx1.wav
|
82 |
+
└───valid
|
83 |
+
├───xx2-0xxx2.wav
|
84 |
+
├───...
|
85 |
+
└───xxx7-xxx007.wav
|
86 |
+
```
|
87 |
+
|
88 |
+
```bash
|
89 |
+
# Extract all data features, such as pitch, text features, mel features, etc.
|
90 |
+
python tools/preprocessing/extract_features.py --config configs/svc_hubert_soft.py --path dataset --clean
|
91 |
+
```
|
92 |
+
|
93 |
+
## Baseline training
|
94 |
+
> The project is under active development, please backup your config file
|
95 |
+
> The project is under active development, please backup your config file
|
96 |
+
> The project is under active development, please backup your config file
|
97 |
+
|
98 |
+
```bash
|
99 |
+
# Single machine single card / multi-card training
|
100 |
+
python train.py --config configs/svc_hubert_soft.py
|
101 |
+
|
102 |
+
# Resume training
|
103 |
+
python train.py --config configs/svc_hubert_soft.py --resume [checkpoint]
|
104 |
+
|
105 |
+
# Fine-tune the pre-trained model
|
106 |
+
# Note: You should adjust the learning rate scheduler in the config file to warmup_cosine_finetune
|
107 |
+
python train.py --config configs/svc_hubert_soft.py --pretrained [checkpoint]
|
108 |
+
```
|
109 |
+
|
110 |
+
## Inference
|
111 |
+
```bash
|
112 |
+
# Inference using shell, you can use --help to view more parameters
|
113 |
+
python inference.py --config [config] \
|
114 |
+
--checkpoint [checkpoint] \
|
115 |
+
--input [input audio] \
|
116 |
+
--output [output audio]
|
117 |
+
|
118 |
+
|
119 |
+
# Gradio Web Inference, other parameters will be used as gradio default parameters
|
120 |
+
python inference/gradio_inference.py --config [config] \
|
121 |
+
--checkpoint [checkpoint] \
|
122 |
+
--gradio
|
123 |
+
```
|
124 |
+
|
125 |
+
## Convert a DiffSVC model to Fish Diffusion
|
126 |
+
```bash
|
127 |
+
python tools/diff_svc_converter.py --config configs/svc_hubert_soft_diff_svc.py \
|
128 |
+
--input-path [DiffSVC ckpt] \
|
129 |
+
--output-path [Fish Diffusion ckpt]
|
130 |
+
```
|
131 |
+
|
132 |
+
## Contributing
|
133 |
+
If you have any questions, please submit an issue or pull request.
|
134 |
+
You should run `tools/lint.sh` before submitting a pull request.
|
135 |
+
|
136 |
+
Real-time documentation can be generated by
|
137 |
+
```bash
|
138 |
+
sphinx-autobuild docs docs/_build/html
|
139 |
+
```
|
140 |
+
|
141 |
+
## Credits
|
142 |
+
+ [diff-svc original](https://github.com/prophesier/diff-svc)
|
143 |
+
+ [diff-svc optimized](https://github.com/innnky/diff-svc/)
|
144 |
+
+ [DiffSinger](https://github.com/openvpi/DiffSinger/)
|
145 |
+
+ [SpeechSplit](https://github.com/auspicious3000/SpeechSplit)
|
146 |
+
|
147 |
+
## Thanks to all contributors for their efforts
|
148 |
+
|
149 |
+
<a href="https://github.com/fishaudio/fish-diffusion/graphs/contributors" target="_blank">
|
150 |
+
<img src="https://contrib.rocks/image?repo=fishaudio/fish-diffusion" />
|
151 |
+
</a>
|
flask_api.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import logging
|
3 |
+
|
4 |
+
import librosa
|
5 |
+
import soundfile
|
6 |
+
from flask import Flask, request, send_file
|
7 |
+
from flask_cors import CORS
|
8 |
+
|
9 |
+
#from infer_tools.infer_tool import Svc
|
10 |
+
from inference_vst import SvcFish
|
11 |
+
#from utils.hparams import hparams
|
12 |
+
|
13 |
+
app = Flask(__name__)
|
14 |
+
|
15 |
+
CORS(app)
|
16 |
+
|
17 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
18 |
+
|
19 |
+
|
20 |
+
@app.route("/voiceChangeModel", methods=["POST"])
|
21 |
+
def voice_change_model():
|
22 |
+
request_form = request.form
|
23 |
+
wave_file = request.files.get("sample", None)
|
24 |
+
# 变调信息
|
25 |
+
f_pitch_change = float(request_form.get("fPitchChange", 0))
|
26 |
+
# 获取spkid
|
27 |
+
int_speak_Id = int(request_form.get("sSpeakId", 0))
|
28 |
+
# DAW所需的采样率
|
29 |
+
daw_sample = int(float(request_form.get("sampleRate", 0)))
|
30 |
+
# http获得wav文件并转换
|
31 |
+
input_wav_path = io.BytesIO(wave_file.read())
|
32 |
+
# 模型推理
|
33 |
+
_audio, _model_sr = svc_model.infer(input_wav_path, f_pitch_change, int_speak_Id, daw_sample)
|
34 |
+
tar_audio = librosa.resample(_audio, _model_sr, daw_sample)
|
35 |
+
# 返回音频
|
36 |
+
out_wav_path = io.BytesIO()
|
37 |
+
soundfile.write(out_wav_path, tar_audio, daw_sample, format="wav")
|
38 |
+
out_wav_path.seek(0)
|
39 |
+
return send_file(out_wav_path, download_name="temp.wav", as_attachment=True)
|
40 |
+
|
41 |
+
|
42 |
+
if __name__ == '__main__':
|
43 |
+
# fish下只需传入下列参数
|
44 |
+
checkpoint_path = 'logs/DiffSVC/version_0/checkpoints/epoch=123-step=300000-valid_loss=0.17.ckpt'
|
45 |
+
config_path = 'configs/svc_cn_hubert_soft_ms.py'
|
46 |
+
# 加速倍率,None即采用配置文件的值
|
47 |
+
sampler_interval = None
|
48 |
+
# 是否提取人声,是否合成非人声,以及人声响度增益
|
49 |
+
extract_vocals = True
|
50 |
+
merge_non_vocals = False
|
51 |
+
vocals_loudness_gain = 0.0
|
52 |
+
# 最大切片时长
|
53 |
+
max_slice_duration = 30.0
|
54 |
+
# 静音阈值
|
55 |
+
silence_threshold = 60
|
56 |
+
|
57 |
+
svc_model = SvcFish(checkpoint_path, config_path, sampler_interval=sampler_interval,
|
58 |
+
extract_vocals=extract_vocals,merge_non_vocals=merge_non_vocals,
|
59 |
+
vocals_loudness_gain=vocals_loudness_gain,silence_threshold=silence_threshold,
|
60 |
+
max_slice_duration=max_slice_duration)
|
61 |
+
|
62 |
+
# 此处与vst插件对应,不建议更改
|
63 |
+
app.run(port=6842, host="0.0.0.0", debug=False, threaded=False)
|
inference.py
ADDED
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
from functools import partial
|
5 |
+
from typing import Union
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import librosa
|
9 |
+
import numpy as np
|
10 |
+
import soundfile as sf
|
11 |
+
import torch
|
12 |
+
from fish_audio_preprocess.utils import loudness_norm, separate_audio
|
13 |
+
from loguru import logger
|
14 |
+
from mmengine import Config
|
15 |
+
|
16 |
+
from fish_diffusion.feature_extractors import FEATURE_EXTRACTORS, PITCH_EXTRACTORS
|
17 |
+
from fish_diffusion.utils.audio import get_mel_from_audio, slice_audio
|
18 |
+
from fish_diffusion.utils.inference import load_checkpoint
|
19 |
+
from fish_diffusion.utils.tensor import repeat_expand
|
20 |
+
|
21 |
+
|
22 |
+
@torch.no_grad()
|
23 |
+
def inference(
|
24 |
+
config,
|
25 |
+
checkpoint,
|
26 |
+
input_path,
|
27 |
+
output_path,
|
28 |
+
speaker_id=0,
|
29 |
+
pitch_adjust=0,
|
30 |
+
silence_threshold=30,
|
31 |
+
max_slice_duration=5,
|
32 |
+
extract_vocals=True,
|
33 |
+
merge_non_vocals=True,
|
34 |
+
vocals_loudness_gain=0.0,
|
35 |
+
sampler_interval=None,
|
36 |
+
sampler_progress=False,
|
37 |
+
device="cuda",
|
38 |
+
gradio_progress=None,
|
39 |
+
):
|
40 |
+
"""Inference
|
41 |
+
|
42 |
+
Args:
|
43 |
+
config: config
|
44 |
+
checkpoint: checkpoint path
|
45 |
+
input_path: input path
|
46 |
+
output_path: output path
|
47 |
+
speaker_id: speaker id
|
48 |
+
pitch_adjust: pitch adjust
|
49 |
+
silence_threshold: silence threshold of librosa.effects.split
|
50 |
+
max_slice_duration: maximum duration of each slice
|
51 |
+
extract_vocals: extract vocals
|
52 |
+
merge_non_vocals: merge non-vocals, only works when extract_vocals is True
|
53 |
+
vocals_loudness_gain: loudness gain of vocals (dB)
|
54 |
+
sampler_interval: sampler interval, lower value means higher quality
|
55 |
+
sampler_progress: show sampler progress
|
56 |
+
device: device
|
57 |
+
gradio_progress: gradio progress callback
|
58 |
+
"""
|
59 |
+
|
60 |
+
if sampler_interval is not None:
|
61 |
+
config.model.diffusion.sampler_interval = sampler_interval
|
62 |
+
|
63 |
+
if os.path.isdir(checkpoint):
|
64 |
+
# Find the latest checkpoint
|
65 |
+
checkpoints = sorted(os.listdir(checkpoint))
|
66 |
+
logger.info(f"Found {len(checkpoints)} checkpoints, using {checkpoints[-1]}")
|
67 |
+
checkpoint = os.path.join(checkpoint, checkpoints[-1])
|
68 |
+
|
69 |
+
audio, sr = librosa.load(input_path, sr=config.sampling_rate, mono=True)
|
70 |
+
|
71 |
+
# Extract vocals
|
72 |
+
|
73 |
+
if extract_vocals:
|
74 |
+
logger.info("Extracting vocals...")
|
75 |
+
|
76 |
+
if gradio_progress is not None:
|
77 |
+
gradio_progress(0, "Extracting vocals...")
|
78 |
+
|
79 |
+
model = separate_audio.init_model("htdemucs", device=device)
|
80 |
+
audio = librosa.resample(audio, orig_sr=sr, target_sr=model.samplerate)[None]
|
81 |
+
|
82 |
+
# To two channels
|
83 |
+
audio = np.concatenate([audio, audio], axis=0)
|
84 |
+
audio = torch.from_numpy(audio).to(device)
|
85 |
+
tracks = separate_audio.separate_audio(
|
86 |
+
model, audio, shifts=1, num_workers=0, progress=True
|
87 |
+
)
|
88 |
+
audio = separate_audio.merge_tracks(tracks, filter=["vocals"]).cpu().numpy()
|
89 |
+
non_vocals = (
|
90 |
+
separate_audio.merge_tracks(tracks, filter=["drums", "bass", "other"])
|
91 |
+
.cpu()
|
92 |
+
.numpy()
|
93 |
+
)
|
94 |
+
|
95 |
+
audio = librosa.resample(audio[0], orig_sr=model.samplerate, target_sr=sr)
|
96 |
+
non_vocals = librosa.resample(
|
97 |
+
non_vocals[0], orig_sr=model.samplerate, target_sr=sr
|
98 |
+
)
|
99 |
+
|
100 |
+
# Normalize loudness
|
101 |
+
non_vocals = loudness_norm.loudness_norm(non_vocals, sr)
|
102 |
+
|
103 |
+
# Normalize loudness
|
104 |
+
audio = loudness_norm.loudness_norm(audio, sr)
|
105 |
+
|
106 |
+
# Slice into segments
|
107 |
+
segments = list(
|
108 |
+
slice_audio(
|
109 |
+
audio, sr, max_duration=max_slice_duration, top_db=silence_threshold
|
110 |
+
)
|
111 |
+
)
|
112 |
+
logger.info(f"Sliced into {len(segments)} segments")
|
113 |
+
|
114 |
+
# Load models
|
115 |
+
text_features_extractor = FEATURE_EXTRACTORS.build(
|
116 |
+
config.preprocessing.text_features_extractor
|
117 |
+
).to(device)
|
118 |
+
text_features_extractor.eval()
|
119 |
+
|
120 |
+
model = load_checkpoint(config, checkpoint, device=device)
|
121 |
+
|
122 |
+
pitch_extractor = PITCH_EXTRACTORS.build(config.preprocessing.pitch_extractor)
|
123 |
+
assert pitch_extractor is not None, "Pitch extractor not found"
|
124 |
+
|
125 |
+
generated_audio = np.zeros_like(audio)
|
126 |
+
audio_torch = torch.from_numpy(audio).to(device)[None]
|
127 |
+
|
128 |
+
for idx, (start, end) in enumerate(segments):
|
129 |
+
if gradio_progress is not None:
|
130 |
+
gradio_progress(idx / len(segments), "Generating audio...")
|
131 |
+
|
132 |
+
segment = audio_torch[:, start:end]
|
133 |
+
logger.info(
|
134 |
+
f"Processing segment {idx + 1}/{len(segments)}, duration: {segment.shape[-1] / sr:.2f}s"
|
135 |
+
)
|
136 |
+
|
137 |
+
# Extract mel
|
138 |
+
mel = get_mel_from_audio(segment, sr)
|
139 |
+
|
140 |
+
# Extract pitch (f0)
|
141 |
+
pitch = pitch_extractor(segment, sr, pad_to=mel.shape[-1]).float()
|
142 |
+
pitch *= 2 ** (pitch_adjust / 12)
|
143 |
+
|
144 |
+
# Extract text features
|
145 |
+
text_features = text_features_extractor(segment, sr)[0]
|
146 |
+
text_features = repeat_expand(text_features, mel.shape[-1]).T
|
147 |
+
|
148 |
+
# Predict
|
149 |
+
src_lens = torch.tensor([mel.shape[-1]]).to(device)
|
150 |
+
|
151 |
+
features = model.model.forward_features(
|
152 |
+
speakers=torch.tensor([speaker_id]).long().to(device),
|
153 |
+
contents=text_features[None].to(device),
|
154 |
+
src_lens=src_lens,
|
155 |
+
max_src_len=max(src_lens),
|
156 |
+
mel_lens=src_lens,
|
157 |
+
max_mel_len=max(src_lens),
|
158 |
+
pitches=pitch[None].to(device),
|
159 |
+
)
|
160 |
+
|
161 |
+
result = model.model.diffusion(features["features"], progress=sampler_progress)
|
162 |
+
wav = model.vocoder.spec2wav(result[0].T, f0=pitch).cpu().numpy()
|
163 |
+
max_wav_len = generated_audio.shape[-1] - start
|
164 |
+
generated_audio[start : start + wav.shape[-1]] = wav[:max_wav_len]
|
165 |
+
|
166 |
+
# Loudness normalization
|
167 |
+
generated_audio = loudness_norm.loudness_norm(generated_audio, sr)
|
168 |
+
|
169 |
+
# Loudness gain
|
170 |
+
loudness_float = 10 ** (vocals_loudness_gain / 20)
|
171 |
+
generated_audio = generated_audio * loudness_float
|
172 |
+
|
173 |
+
# Merge non-vocals
|
174 |
+
if extract_vocals and merge_non_vocals:
|
175 |
+
generated_audio = (generated_audio + non_vocals) / 2
|
176 |
+
|
177 |
+
logger.info("Done")
|
178 |
+
|
179 |
+
if output_path is not None:
|
180 |
+
sf.write(output_path, generated_audio, sr)
|
181 |
+
|
182 |
+
return generated_audio, sr
|
183 |
+
|
184 |
+
|
185 |
+
def parse_args():
|
186 |
+
parser = argparse.ArgumentParser()
|
187 |
+
|
188 |
+
parser.add_argument(
|
189 |
+
"--config",
|
190 |
+
type=str,
|
191 |
+
required=True,
|
192 |
+
help="Path to the config file",
|
193 |
+
)
|
194 |
+
|
195 |
+
parser.add_argument(
|
196 |
+
"--checkpoint",
|
197 |
+
type=str,
|
198 |
+
required=True,
|
199 |
+
help="Path to the checkpoint file",
|
200 |
+
)
|
201 |
+
|
202 |
+
parser.add_argument(
|
203 |
+
"--gradio",
|
204 |
+
action="store_true",
|
205 |
+
help="Run in gradio mode",
|
206 |
+
)
|
207 |
+
|
208 |
+
parser.add_argument(
|
209 |
+
"--gradio_share",
|
210 |
+
action="store_true",
|
211 |
+
help="Share gradio app",
|
212 |
+
)
|
213 |
+
|
214 |
+
parser.add_argument(
|
215 |
+
"--input",
|
216 |
+
type=str,
|
217 |
+
required=False,
|
218 |
+
help="Path to the input audio file",
|
219 |
+
)
|
220 |
+
|
221 |
+
parser.add_argument(
|
222 |
+
"--output",
|
223 |
+
type=str,
|
224 |
+
required=False,
|
225 |
+
help="Path to the output audio file",
|
226 |
+
)
|
227 |
+
|
228 |
+
parser.add_argument(
|
229 |
+
"--speaker_id",
|
230 |
+
type=int,
|
231 |
+
default=0,
|
232 |
+
help="Speaker id",
|
233 |
+
)
|
234 |
+
|
235 |
+
parser.add_argument(
|
236 |
+
"--speaker_mapping",
|
237 |
+
type=str,
|
238 |
+
default=None,
|
239 |
+
help="Speaker mapping file (gradio mode only)",
|
240 |
+
)
|
241 |
+
|
242 |
+
parser.add_argument(
|
243 |
+
"--pitch_adjust",
|
244 |
+
type=int,
|
245 |
+
default=0,
|
246 |
+
help="Pitch adjustment in semitones",
|
247 |
+
)
|
248 |
+
|
249 |
+
parser.add_argument(
|
250 |
+
"--extract_vocals",
|
251 |
+
action="store_true",
|
252 |
+
help="Extract vocals",
|
253 |
+
)
|
254 |
+
|
255 |
+
parser.add_argument(
|
256 |
+
"--merge_non_vocals",
|
257 |
+
action="store_true",
|
258 |
+
help="Merge non-vocals",
|
259 |
+
)
|
260 |
+
|
261 |
+
parser.add_argument(
|
262 |
+
"--vocals_loudness_gain",
|
263 |
+
type=float,
|
264 |
+
default=0,
|
265 |
+
help="Loudness gain for vocals",
|
266 |
+
)
|
267 |
+
|
268 |
+
parser.add_argument(
|
269 |
+
"--sampler_interval",
|
270 |
+
type=int,
|
271 |
+
default=None,
|
272 |
+
required=False,
|
273 |
+
help="Sampler interval, if not specified, will be taken from config",
|
274 |
+
)
|
275 |
+
|
276 |
+
parser.add_argument(
|
277 |
+
"--sampler_progress",
|
278 |
+
action="store_true",
|
279 |
+
help="Show sampler progress",
|
280 |
+
)
|
281 |
+
|
282 |
+
parser.add_argument(
|
283 |
+
"--device",
|
284 |
+
type=str,
|
285 |
+
default=None,
|
286 |
+
required=False,
|
287 |
+
help="Device to use",
|
288 |
+
)
|
289 |
+
|
290 |
+
return parser.parse_args()
|
291 |
+
|
292 |
+
|
293 |
+
def run_inference(
|
294 |
+
config_path: str,
|
295 |
+
model_path: str,
|
296 |
+
input_path: str,
|
297 |
+
speaker: Union[int, str],
|
298 |
+
pitch_adjust: int,
|
299 |
+
sampler_interval: int,
|
300 |
+
extract_vocals: bool,
|
301 |
+
device: str,
|
302 |
+
progress=gr.Progress(),
|
303 |
+
speaker_mapping: dict = None,
|
304 |
+
):
|
305 |
+
if speaker_mapping is not None and isinstance(speaker, str):
|
306 |
+
speaker = speaker_mapping[speaker]
|
307 |
+
|
308 |
+
audio, sr = inference(
|
309 |
+
Config.fromfile(config_path),
|
310 |
+
model_path,
|
311 |
+
input_path=input_path,
|
312 |
+
output_path=None,
|
313 |
+
speaker_id=speaker,
|
314 |
+
pitch_adjust=pitch_adjust,
|
315 |
+
sampler_interval=round(sampler_interval),
|
316 |
+
extract_vocals=extract_vocals,
|
317 |
+
merge_non_vocals=False,
|
318 |
+
device=device,
|
319 |
+
gradio_progress=progress,
|
320 |
+
)
|
321 |
+
|
322 |
+
return (sr, audio)
|
323 |
+
|
324 |
+
|
325 |
+
def launch_gradio(args):
|
326 |
+
with gr.Blocks(title="Fish Diffusion") as app:
|
327 |
+
gr.Markdown("# Fish Diffusion SVC Inference")
|
328 |
+
|
329 |
+
with gr.Row():
|
330 |
+
with gr.Column():
|
331 |
+
input_audio = gr.Audio(
|
332 |
+
label="Input Audio",
|
333 |
+
type="filepath",
|
334 |
+
value=args.input,
|
335 |
+
)
|
336 |
+
output_audio = gr.Audio(label="Output Audio")
|
337 |
+
|
338 |
+
with gr.Column():
|
339 |
+
if args.speaker_mapping is not None:
|
340 |
+
speaker_mapping = json.load(open(args.speaker_mapping))
|
341 |
+
|
342 |
+
speaker = gr.Dropdown(
|
343 |
+
label="Speaker Name (Used for Multi-Speaker Models)",
|
344 |
+
choices=list(speaker_mapping.keys()),
|
345 |
+
value=list(speaker_mapping.keys())[0],
|
346 |
+
)
|
347 |
+
else:
|
348 |
+
speaker_mapping = None
|
349 |
+
speaker = gr.Number(
|
350 |
+
label="Speaker ID (Used for Multi-Speaker Models)",
|
351 |
+
value=args.speaker_id,
|
352 |
+
)
|
353 |
+
|
354 |
+
pitch_adjust = gr.Number(
|
355 |
+
label="Pitch Adjust (Semitones)", value=args.pitch_adjust
|
356 |
+
)
|
357 |
+
sampler_interval = gr.Slider(
|
358 |
+
label="Sampler Interval (⬆️ Faster Generation, ⬇️ Better Quality)",
|
359 |
+
value=args.sampler_interval or 10,
|
360 |
+
minimum=1,
|
361 |
+
maximum=100,
|
362 |
+
)
|
363 |
+
extract_vocals = gr.Checkbox(
|
364 |
+
label="Extract Vocals (For low quality audio)",
|
365 |
+
value=args.extract_vocals,
|
366 |
+
)
|
367 |
+
device = gr.Radio(
|
368 |
+
label="Device", choices=["cuda", "cpu"], value=args.device or "cuda"
|
369 |
+
)
|
370 |
+
|
371 |
+
run_btn = gr.Button(label="Run")
|
372 |
+
|
373 |
+
run_btn.click(
|
374 |
+
partial(
|
375 |
+
run_inference,
|
376 |
+
args.config,
|
377 |
+
args.checkpoint,
|
378 |
+
speaker_mapping=speaker_mapping,
|
379 |
+
),
|
380 |
+
[
|
381 |
+
input_audio,
|
382 |
+
speaker,
|
383 |
+
pitch_adjust,
|
384 |
+
sampler_interval,
|
385 |
+
extract_vocals,
|
386 |
+
device,
|
387 |
+
],
|
388 |
+
output_audio,
|
389 |
+
)
|
390 |
+
|
391 |
+
app.queue(concurrency_count=2).launch(share=args.gradio_share)
|
392 |
+
|
393 |
+
|
394 |
+
if __name__ == "__main__":
|
395 |
+
args = parse_args()
|
396 |
+
|
397 |
+
assert args.gradio or (
|
398 |
+
args.input is not None and args.output is not None
|
399 |
+
), "Either --gradio or --input and --output should be specified"
|
400 |
+
|
401 |
+
if args.device is None:
|
402 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
403 |
+
else:
|
404 |
+
device = torch.device(args.device)
|
405 |
+
|
406 |
+
if args.gradio:
|
407 |
+
args.device = device
|
408 |
+
launch_gradio(args)
|
409 |
+
|
410 |
+
else:
|
411 |
+
|
412 |
+
inference(
|
413 |
+
Config.fromfile(args.config),
|
414 |
+
args.checkpoint,
|
415 |
+
args.input,
|
416 |
+
args.output,
|
417 |
+
speaker_id=args.speaker_id,
|
418 |
+
pitch_adjust=args.pitch_adjust,
|
419 |
+
extract_vocals=args.extract_vocals,
|
420 |
+
merge_non_vocals=args.merge_non_vocals,
|
421 |
+
vocals_loudness_gain=args.vocals_loudness_gain,
|
422 |
+
sampler_interval=args.sampler_interval,
|
423 |
+
sampler_progress=args.sampler_progress,
|
424 |
+
device=device,
|
425 |
+
)
|
inference_svs.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import soundfile as sf
|
8 |
+
import torch
|
9 |
+
from fish_audio_preprocess.utils import loudness_norm
|
10 |
+
from loguru import logger
|
11 |
+
from mmengine import Config
|
12 |
+
|
13 |
+
from fish_diffusion.feature_extractors import FEATURE_EXTRACTORS, PITCH_EXTRACTORS
|
14 |
+
from fish_diffusion.utils.tensor import repeat_expand
|
15 |
+
from train import FishDiffusion
|
16 |
+
|
17 |
+
|
18 |
+
@torch.no_grad()
|
19 |
+
def inference(
|
20 |
+
config,
|
21 |
+
checkpoint,
|
22 |
+
input_path,
|
23 |
+
output_path,
|
24 |
+
dictionary_path="dictionaries/opencpop-strict.txt",
|
25 |
+
speaker_id=0,
|
26 |
+
sampler_interval=None,
|
27 |
+
sampler_progress=False,
|
28 |
+
device="cuda",
|
29 |
+
):
|
30 |
+
"""Inference
|
31 |
+
|
32 |
+
Args:
|
33 |
+
config: config
|
34 |
+
checkpoint: checkpoint path
|
35 |
+
input_path: input path
|
36 |
+
output_path: output path
|
37 |
+
dictionary_path: dictionary path
|
38 |
+
speaker_id: speaker id
|
39 |
+
sampler_interval: sampler interval, lower value means higher quality
|
40 |
+
sampler_progress: show sampler progress
|
41 |
+
device: device
|
42 |
+
"""
|
43 |
+
|
44 |
+
if sampler_interval is not None:
|
45 |
+
config.model.diffusion.sampler_interval = sampler_interval
|
46 |
+
|
47 |
+
if os.path.isdir(checkpoint):
|
48 |
+
# Find the latest checkpoint
|
49 |
+
checkpoints = sorted(os.listdir(checkpoint))
|
50 |
+
logger.info(f"Found {len(checkpoints)} checkpoints, using {checkpoints[-1]}")
|
51 |
+
checkpoint = os.path.join(checkpoint, checkpoints[-1])
|
52 |
+
|
53 |
+
# Load models
|
54 |
+
phoneme_features_extractor = FEATURE_EXTRACTORS.build(
|
55 |
+
config.preprocessing.phoneme_features_extractor
|
56 |
+
).to(device)
|
57 |
+
phoneme_features_extractor.eval()
|
58 |
+
|
59 |
+
model = FishDiffusion(config)
|
60 |
+
state_dict = torch.load(checkpoint, map_location="cpu")
|
61 |
+
|
62 |
+
if "state_dict" in state_dict: # Checkpoint is saved by pl
|
63 |
+
state_dict = state_dict["state_dict"]
|
64 |
+
|
65 |
+
model.load_state_dict(state_dict)
|
66 |
+
model.to(device)
|
67 |
+
model.eval()
|
68 |
+
|
69 |
+
pitch_extractor = PITCH_EXTRACTORS.build(config.preprocessing.pitch_extractor)
|
70 |
+
assert pitch_extractor is not None, "Pitch extractor not found"
|
71 |
+
|
72 |
+
# Load dictionary
|
73 |
+
phones_list = []
|
74 |
+
for i in open(dictionary_path):
|
75 |
+
_, phones = i.strip().split("\t")
|
76 |
+
for j in phones.split():
|
77 |
+
if j not in phones_list:
|
78 |
+
phones_list.append(j)
|
79 |
+
|
80 |
+
phones_list = ["<PAD>", "<EOS>", "<UNK>", "AP", "SP"] + sorted(phones_list)
|
81 |
+
|
82 |
+
# Load ds file
|
83 |
+
with open(input_path) as f:
|
84 |
+
ds = json.load(f)
|
85 |
+
|
86 |
+
generated_audio = np.zeros(
|
87 |
+
math.ceil(
|
88 |
+
(
|
89 |
+
float(ds[-1]["offset"])
|
90 |
+
+ float(ds[-1]["f0_timestep"]) * len(ds[-1]["f0_seq"].split(" "))
|
91 |
+
)
|
92 |
+
* config.sampling_rate
|
93 |
+
)
|
94 |
+
)
|
95 |
+
|
96 |
+
for idx, chunk in enumerate(ds):
|
97 |
+
offset = float(chunk["offset"])
|
98 |
+
|
99 |
+
phones = np.array([phones_list.index(i) for i in chunk["ph_seq"].split(" ")])
|
100 |
+
durations = np.array([0] + [float(i) for i in chunk["ph_dur"].split(" ")])
|
101 |
+
durations = np.cumsum(durations)
|
102 |
+
|
103 |
+
f0_timestep = float(chunk["f0_timestep"])
|
104 |
+
f0_seq = torch.FloatTensor([float(i) for i in chunk["f0_seq"].split(" ")])
|
105 |
+
f0_seq *= 2 ** (6 / 12)
|
106 |
+
|
107 |
+
total_duration = f0_timestep * len(f0_seq)
|
108 |
+
|
109 |
+
logger.info(
|
110 |
+
f"Processing segment {idx + 1}/{len(ds)}, duration: {total_duration:.2f}s"
|
111 |
+
)
|
112 |
+
|
113 |
+
n_mels = round(total_duration * config.sampling_rate / 512)
|
114 |
+
f0_seq = repeat_expand(f0_seq, n_mels, mode="linear")
|
115 |
+
f0_seq = f0_seq.to(device)
|
116 |
+
|
117 |
+
# aligned is in 20ms
|
118 |
+
aligned_phones = torch.zeros(int(total_duration * 50), dtype=torch.long)
|
119 |
+
for i, phone in enumerate(phones):
|
120 |
+
start = int(durations[i] / f0_timestep / 4)
|
121 |
+
end = int(durations[i + 1] / f0_timestep / 4)
|
122 |
+
aligned_phones[start:end] = phone
|
123 |
+
|
124 |
+
# Extract text features
|
125 |
+
phoneme_features = phoneme_features_extractor.forward(
|
126 |
+
aligned_phones.to(device)
|
127 |
+
)[0]
|
128 |
+
|
129 |
+
phoneme_features = repeat_expand(phoneme_features, n_mels).T
|
130 |
+
|
131 |
+
# Predict
|
132 |
+
src_lens = torch.tensor([phoneme_features.shape[0]]).to(device)
|
133 |
+
|
134 |
+
features = model.model.forward_features(
|
135 |
+
speakers=torch.tensor([speaker_id]).long().to(device),
|
136 |
+
contents=phoneme_features[None].to(device),
|
137 |
+
src_lens=src_lens,
|
138 |
+
max_src_len=max(src_lens),
|
139 |
+
mel_lens=src_lens,
|
140 |
+
max_mel_len=max(src_lens),
|
141 |
+
pitches=f0_seq[None],
|
142 |
+
)
|
143 |
+
|
144 |
+
result = model.model.diffusion(features["features"], progress=sampler_progress)
|
145 |
+
wav = model.vocoder.spec2wav(result[0].T, f0=f0_seq).cpu().numpy()
|
146 |
+
start = round(offset * config.sampling_rate)
|
147 |
+
max_wav_len = generated_audio.shape[-1] - start
|
148 |
+
generated_audio[start : start + wav.shape[-1]] = wav[:max_wav_len]
|
149 |
+
|
150 |
+
# Loudness normalization
|
151 |
+
generated_audio = loudness_norm.loudness_norm(generated_audio, config.sampling_rate)
|
152 |
+
|
153 |
+
sf.write(output_path, generated_audio, config.sampling_rate)
|
154 |
+
logger.info("Done")
|
155 |
+
|
156 |
+
|
157 |
+
def parse_args():
|
158 |
+
parser = argparse.ArgumentParser()
|
159 |
+
|
160 |
+
parser.add_argument(
|
161 |
+
"--config",
|
162 |
+
type=str,
|
163 |
+
default="configs/svc_hubert_soft.py",
|
164 |
+
help="Path to the config file",
|
165 |
+
)
|
166 |
+
|
167 |
+
parser.add_argument(
|
168 |
+
"--checkpoint",
|
169 |
+
type=str,
|
170 |
+
required=True,
|
171 |
+
help="Path to the checkpoint file",
|
172 |
+
)
|
173 |
+
|
174 |
+
parser.add_argument(
|
175 |
+
"--input",
|
176 |
+
type=str,
|
177 |
+
required=True,
|
178 |
+
help="Path to the input audio file",
|
179 |
+
)
|
180 |
+
|
181 |
+
parser.add_argument(
|
182 |
+
"--output",
|
183 |
+
type=str,
|
184 |
+
required=True,
|
185 |
+
help="Path to the output audio file",
|
186 |
+
)
|
187 |
+
|
188 |
+
parser.add_argument(
|
189 |
+
"--speaker_id",
|
190 |
+
type=int,
|
191 |
+
default=0,
|
192 |
+
help="Speaker id",
|
193 |
+
)
|
194 |
+
|
195 |
+
parser.add_argument(
|
196 |
+
"--sampler_interval",
|
197 |
+
type=int,
|
198 |
+
default=None,
|
199 |
+
required=False,
|
200 |
+
help="Sampler interval, if not specified, will be taken from config",
|
201 |
+
)
|
202 |
+
|
203 |
+
parser.add_argument(
|
204 |
+
"--sampler_progress",
|
205 |
+
action="store_true",
|
206 |
+
help="Show sampler progress",
|
207 |
+
)
|
208 |
+
|
209 |
+
parser.add_argument(
|
210 |
+
"--device",
|
211 |
+
type=str,
|
212 |
+
default=None,
|
213 |
+
required=False,
|
214 |
+
help="Device to use",
|
215 |
+
)
|
216 |
+
|
217 |
+
return parser.parse_args()
|
218 |
+
|
219 |
+
|
220 |
+
if __name__ == "__main__":
|
221 |
+
args = parse_args()
|
222 |
+
|
223 |
+
if args.device is None:
|
224 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
225 |
+
else:
|
226 |
+
device = torch.device(args.device)
|
227 |
+
|
228 |
+
inference(
|
229 |
+
Config.fromfile(args.config),
|
230 |
+
args.checkpoint,
|
231 |
+
args.input,
|
232 |
+
args.output,
|
233 |
+
speaker_id=args.speaker_id,
|
234 |
+
sampler_interval=args.sampler_interval,
|
235 |
+
sampler_progress=args.sampler_progress,
|
236 |
+
device=device,
|
237 |
+
)
|
inference_vst.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
from functools import partial
|
5 |
+
from typing import Union
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import librosa
|
9 |
+
import numpy as np
|
10 |
+
import soundfile as sf
|
11 |
+
import torch
|
12 |
+
from fish_audio_preprocess.utils import loudness_norm, separate_audio
|
13 |
+
from loguru import logger
|
14 |
+
from mmengine import Config
|
15 |
+
|
16 |
+
from fish_diffusion.feature_extractors import FEATURE_EXTRACTORS, PITCH_EXTRACTORS
|
17 |
+
from fish_diffusion.utils.audio import get_mel_from_audio, slice_audio
|
18 |
+
from fish_diffusion.utils.inference import load_checkpoint
|
19 |
+
from fish_diffusion.utils.tensor import repeat_expand
|
20 |
+
|
21 |
+
|
22 |
+
@torch.no_grad()
|
23 |
+
def inference(
|
24 |
+
in_sample,
|
25 |
+
config_path,
|
26 |
+
checkpoint,
|
27 |
+
input_path,
|
28 |
+
output_path,
|
29 |
+
speaker_id=0,
|
30 |
+
pitch_adjust=0,
|
31 |
+
silence_threshold=60,
|
32 |
+
max_slice_duration=30.0,
|
33 |
+
extract_vocals=True,
|
34 |
+
merge_non_vocals=True,
|
35 |
+
vocals_loudness_gain=0.0,
|
36 |
+
sampler_interval=None,
|
37 |
+
sampler_progress=False,
|
38 |
+
device="cuda",
|
39 |
+
gradio_progress=None,
|
40 |
+
):
|
41 |
+
"""Inference
|
42 |
+
|
43 |
+
Args:
|
44 |
+
config: config
|
45 |
+
checkpoint: checkpoint path
|
46 |
+
input_path: input path
|
47 |
+
output_path: output path
|
48 |
+
speaker_id: speaker id
|
49 |
+
pitch_adjust: pitch adjust
|
50 |
+
silence_threshold: silence threshold of librosa.effects.split
|
51 |
+
max_slice_duration: maximum duration of each slice
|
52 |
+
extract_vocals: extract vocals
|
53 |
+
merge_non_vocals: merge non-vocals, only works when extract_vocals is True
|
54 |
+
vocals_loudness_gain: loudness gain of vocals (dB)
|
55 |
+
sampler_interval: sampler interval, lower value means higher quality
|
56 |
+
sampler_progress: show sampler progress
|
57 |
+
device: device
|
58 |
+
gradio_progress: gradio progress callback
|
59 |
+
"""
|
60 |
+
config = Config.fromfile(config_path)
|
61 |
+
|
62 |
+
if sampler_interval is not None:
|
63 |
+
config.model.diffusion.sampler_interval = sampler_interval
|
64 |
+
|
65 |
+
if os.path.isdir(checkpoint):
|
66 |
+
# Find the latest checkpoint
|
67 |
+
checkpoints = sorted(os.listdir(checkpoint))
|
68 |
+
logger.info(f"Found {len(checkpoints)} checkpoints, using {checkpoints[-1]}")
|
69 |
+
checkpoint = os.path.join(checkpoint, checkpoints[-1])
|
70 |
+
|
71 |
+
audio, sr = librosa.load(input_path, config.sampling_rate, mono=True)
|
72 |
+
#sr = in_sample
|
73 |
+
#audio = sf.read(input_path)
|
74 |
+
|
75 |
+
# Extract vocals
|
76 |
+
|
77 |
+
if extract_vocals:
|
78 |
+
logger.info("Extracting vocals...")
|
79 |
+
|
80 |
+
if gradio_progress is not None:
|
81 |
+
gradio_progress(0, "Extracting vocals...")
|
82 |
+
|
83 |
+
model = separate_audio.init_model("htdemucs", device=device)
|
84 |
+
audio = librosa.resample(audio, orig_sr=sr, target_sr=model.samplerate)[None]
|
85 |
+
|
86 |
+
# To two channels
|
87 |
+
audio = np.concatenate([audio, audio], axis=0)
|
88 |
+
audio = torch.from_numpy(audio).to(device)
|
89 |
+
tracks = separate_audio.separate_audio(
|
90 |
+
model, audio, shifts=1, num_workers=0, progress=True
|
91 |
+
)
|
92 |
+
audio = separate_audio.merge_tracks(tracks, filter=["vocals"]).cpu().numpy()
|
93 |
+
non_vocals = (
|
94 |
+
separate_audio.merge_tracks(tracks, filter=["drums", "bass", "other"])
|
95 |
+
.cpu()
|
96 |
+
.numpy()
|
97 |
+
)
|
98 |
+
|
99 |
+
audio = librosa.resample(audio[0], orig_sr=model.samplerate, target_sr=sr)
|
100 |
+
non_vocals = librosa.resample(
|
101 |
+
non_vocals[0], orig_sr=model.samplerate, target_sr=sr
|
102 |
+
)
|
103 |
+
|
104 |
+
# Normalize loudness
|
105 |
+
non_vocals = loudness_norm.loudness_norm(non_vocals, sr)
|
106 |
+
|
107 |
+
# Normalize loudness
|
108 |
+
audio = loudness_norm.loudness_norm(audio, sr)
|
109 |
+
|
110 |
+
# Slice into segments
|
111 |
+
segments = list(
|
112 |
+
slice_audio(
|
113 |
+
audio, sr, max_duration=max_slice_duration, top_db=silence_threshold
|
114 |
+
)
|
115 |
+
)
|
116 |
+
logger.info(f"Sliced into {len(segments)} segments")
|
117 |
+
|
118 |
+
# Load models
|
119 |
+
text_features_extractor = FEATURE_EXTRACTORS.build(
|
120 |
+
config.preprocessing.text_features_extractor
|
121 |
+
).to(device)
|
122 |
+
text_features_extractor.eval()
|
123 |
+
|
124 |
+
model = load_checkpoint(config, checkpoint, device=device)
|
125 |
+
|
126 |
+
pitch_extractor = PITCH_EXTRACTORS.build(config.preprocessing.pitch_extractor)
|
127 |
+
assert pitch_extractor is not None, "Pitch extractor not found"
|
128 |
+
|
129 |
+
generated_audio = np.zeros_like(audio)
|
130 |
+
audio_torch = torch.from_numpy(audio).to(device)[None]
|
131 |
+
|
132 |
+
for idx, (start, end) in enumerate(segments):
|
133 |
+
if gradio_progress is not None:
|
134 |
+
gradio_progress(idx / len(segments), "Generating audio...")
|
135 |
+
|
136 |
+
segment = audio_torch[:, start:end]
|
137 |
+
logger.info(
|
138 |
+
f"Processing segment {idx + 1}/{len(segments)}, duration: {segment.shape[-1] / sr:.2f}s"
|
139 |
+
)
|
140 |
+
|
141 |
+
# Extract mel
|
142 |
+
mel = get_mel_from_audio(segment, sr)
|
143 |
+
|
144 |
+
# Extract pitch (f0)
|
145 |
+
pitch = pitch_extractor(segment, sr, pad_to=mel.shape[-1]).float()
|
146 |
+
pitch *= 2 ** (pitch_adjust / 12)
|
147 |
+
|
148 |
+
# Extract text features
|
149 |
+
text_features = text_features_extractor(segment, sr)[0]
|
150 |
+
text_features = repeat_expand(text_features, mel.shape[-1]).T
|
151 |
+
|
152 |
+
# Predict
|
153 |
+
src_lens = torch.tensor([mel.shape[-1]]).to(device)
|
154 |
+
|
155 |
+
features = model.model.forward_features(
|
156 |
+
speakers=torch.tensor([speaker_id]).long().to(device),
|
157 |
+
contents=text_features[None].to(device),
|
158 |
+
src_lens=src_lens,
|
159 |
+
max_src_len=max(src_lens),
|
160 |
+
mel_lens=src_lens,
|
161 |
+
max_mel_len=max(src_lens),
|
162 |
+
pitches=pitch[None].to(device),
|
163 |
+
)
|
164 |
+
|
165 |
+
result = model.model.diffusion(features["features"], progress=sampler_progress)
|
166 |
+
wav = model.vocoder.spec2wav(result[0].T, f0=pitch).cpu().numpy()
|
167 |
+
max_wav_len = generated_audio.shape[-1] - start
|
168 |
+
generated_audio[start : start + wav.shape[-1]] = wav[:max_wav_len]
|
169 |
+
|
170 |
+
# Loudness normalization
|
171 |
+
generated_audio = loudness_norm.loudness_norm(generated_audio, sr)
|
172 |
+
|
173 |
+
# Loudness gain
|
174 |
+
loudness_float = 10 ** (vocals_loudness_gain / 20)
|
175 |
+
generated_audio = generated_audio * loudness_float
|
176 |
+
|
177 |
+
# Merge non-vocals
|
178 |
+
if extract_vocals and merge_non_vocals:
|
179 |
+
generated_audio = (generated_audio + non_vocals) / 2
|
180 |
+
|
181 |
+
logger.info("Done")
|
182 |
+
|
183 |
+
if output_path is not None:
|
184 |
+
sf.write(output_path, generated_audio, sr)
|
185 |
+
|
186 |
+
return generated_audio, sr
|
187 |
+
|
188 |
+
class SvcFish:
|
189 |
+
def __init__(self, checkpoint_path, config_path, sampler_interval=None, extract_vocals=True,
|
190 |
+
merge_non_vocals=True,vocals_loudness_gain=0.0,silence_threshold=60, max_slice_duration=30.0):
|
191 |
+
self.config_path = config_path
|
192 |
+
self.checkpoint_path = checkpoint_path
|
193 |
+
self.sampler_interval = sampler_interval
|
194 |
+
self.silence_threshold = silence_threshold
|
195 |
+
self.max_slice_duration = max_slice_duration
|
196 |
+
self.extract_vocals = extract_vocals
|
197 |
+
self.merge_non_vocals = merge_non_vocals
|
198 |
+
self.vocals_loudness_gain = vocals_loudness_gain
|
199 |
+
def infer(self, input_path, pitch_adjust, speaker_id, in_sample):
|
200 |
+
return inference(
|
201 |
+
in_sample=in_sample,
|
202 |
+
config_path=self.config_path,
|
203 |
+
checkpoint=self.checkpoint_path,
|
204 |
+
input_path=input_path,
|
205 |
+
output_path=None,
|
206 |
+
speaker_id=speaker_id,
|
207 |
+
pitch_adjust=pitch_adjust,
|
208 |
+
silence_threshold=self.silence_threshold,
|
209 |
+
max_slice_duration=self.max_slice_duration,
|
210 |
+
extract_vocals=self.extract_vocals,
|
211 |
+
merge_non_vocals=self.merge_non_vocals,
|
212 |
+
vocals_loudness_gain=self.vocals_loudness_gain,
|
213 |
+
sampler_interval=self.sampler_interval,
|
214 |
+
sampler_progress=True,
|
215 |
+
device="cuda",
|
216 |
+
gradio_progress=None,
|
217 |
+
)
|
poetry.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|
poetry.toml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
[virtualenvs]
|
2 |
+
create = false
|
pyproject.toml
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.poetry]
|
2 |
+
name = "fish-diffusion"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = ""
|
5 |
+
authors = ["Lengyue <[email protected]>"]
|
6 |
+
license = "Apache"
|
7 |
+
|
8 |
+
packages = [{ include = "fish_diffusion" }]
|
9 |
+
|
10 |
+
[tool.poetry.dependencies]
|
11 |
+
python = "^3.10"
|
12 |
+
praat-parselmouth = "^0.4.3"
|
13 |
+
soundfile = "^0.11.0"
|
14 |
+
librosa = "^0.9.1"
|
15 |
+
pytorch-lightning = "^1.8.6"
|
16 |
+
numba = "^0.56.4"
|
17 |
+
fish-audio-preprocess = "^0.1.9"
|
18 |
+
wandb = "^0.13.9"
|
19 |
+
transformers = "^4.25.1"
|
20 |
+
torchcrepe = "^0.0.17"
|
21 |
+
mmengine = "^0.4.0"
|
22 |
+
loguru = "^0.6.0"
|
23 |
+
click = "^8.1.3"
|
24 |
+
tensorboard = "^2.11.2"
|
25 |
+
openai-whisper = "^20230124"
|
26 |
+
pypinyin = "^0.48.0"
|
27 |
+
TextGrid = "^1.5"
|
28 |
+
pyworld = "^0.3.2"
|
29 |
+
pykakasi = "^2.2.1"
|
30 |
+
gradio = "^3.18.0"
|
31 |
+
onnxruntime = "^1.14.0"
|
32 |
+
|
33 |
+
[tool.poetry.group.dev.dependencies]
|
34 |
+
isort = "^5.11.4"
|
35 |
+
black = "^22.12.0"
|
36 |
+
|
37 |
+
[tool.poetry.group.docs]
|
38 |
+
optional = true
|
39 |
+
|
40 |
+
[tool.poetry.group.docs.dependencies]
|
41 |
+
furo = "^2022.12.7"
|
42 |
+
sphinx-autobuild = "^2021.3.14"
|
43 |
+
myst-parser = "^0.18.1"
|
44 |
+
|
45 |
+
[build-system]
|
46 |
+
requires = ["poetry-core>=1.2.0"]
|
47 |
+
build-backend = "poetry.core.masonry.api"
|
48 |
+
|
49 |
+
[tool.isort]
|
50 |
+
profile = "black"
|
51 |
+
extend_skip = ["dataset", "logs"]
|
requirements.txt
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==1.3.0
|
2 |
+
aiohttp==3.8.3
|
3 |
+
aiosignal==1.3.1
|
4 |
+
appdirs==1.4.4
|
5 |
+
asttokens==2.1.0
|
6 |
+
async-timeout==4.0.2
|
7 |
+
attrs==22.1.0
|
8 |
+
audioread==3.0.0
|
9 |
+
backcall==0.2.0
|
10 |
+
cachetools==5.2.0
|
11 |
+
certifi==2022.9.24
|
12 |
+
cffi==1.15.1
|
13 |
+
charset-normalizer==2.1.1
|
14 |
+
contourpy==1.0.6
|
15 |
+
cycler==0.11.0
|
16 |
+
debugpy==1.6.3
|
17 |
+
decorator==5.1.1
|
18 |
+
einops==0.6.0
|
19 |
+
entrypoints==0.4
|
20 |
+
executing==1.2.0
|
21 |
+
fonttools==4.38.0
|
22 |
+
frozenlist==1.3.3
|
23 |
+
fsspec==2022.11.0
|
24 |
+
future==0.18.2
|
25 |
+
google-auth==2.14.1
|
26 |
+
google-auth-oauthlib==0.4.6
|
27 |
+
grpcio==1.50.0
|
28 |
+
h5py==3.7.0
|
29 |
+
hparams==0.3.0
|
30 |
+
idna==3.4
|
31 |
+
imageio==2.22.4
|
32 |
+
importlib-metadata==5.0.0
|
33 |
+
ipykernel==6.17.1
|
34 |
+
ipython==8.6.0
|
35 |
+
jedi==0.18.1
|
36 |
+
joblib==1.2.0
|
37 |
+
jupyter_client==7.4.7
|
38 |
+
jupyter_core==5.0.0
|
39 |
+
kiwisolver==1.4.4
|
40 |
+
librosa==0.9.1
|
41 |
+
llvmlite==0.39.1
|
42 |
+
Markdown==3.4.1
|
43 |
+
MarkupSafe==2.1.1
|
44 |
+
matplotlib==3.6.2
|
45 |
+
matplotlib-inline==0.1.6
|
46 |
+
multidict==6.0.2
|
47 |
+
nest-asyncio==1.5.6
|
48 |
+
networkx==2.8.8
|
49 |
+
numba==0.56.4
|
50 |
+
numpy==1.23.5
|
51 |
+
oauthlib==3.2.2
|
52 |
+
packaging==21.3
|
53 |
+
parso==0.8.3
|
54 |
+
pexpect==4.8.0
|
55 |
+
pickleshare==0.7.5
|
56 |
+
Pillow==9.3.0
|
57 |
+
platformdirs==2.5.4
|
58 |
+
pooch==1.6.0
|
59 |
+
praat-parselmouth==0.5.0
|
60 |
+
prompt-toolkit==3.0.32
|
61 |
+
protobuf==3.20.3
|
62 |
+
psutil==5.9.4
|
63 |
+
ptyprocess==0.7.0
|
64 |
+
pure-eval==0.2.2
|
65 |
+
pyasn1==0.4.8
|
66 |
+
pyasn1-modules==0.2.8
|
67 |
+
pycparser==2.21
|
68 |
+
pycwt==0.3.0a22
|
69 |
+
pyDeprecate==0.3.0
|
70 |
+
Pygments==2.13.0
|
71 |
+
pyloudnorm==0.2.0
|
72 |
+
pyparsing==3.0.9
|
73 |
+
python-dateutil==2.8.2
|
74 |
+
pytorch-lightning==2.0.0
|
75 |
+
PyWavelets==1.4.1
|
76 |
+
PyYAML==5.4.1
|
77 |
+
pyzmq==24.0.1
|
78 |
+
requests==2.28.1
|
79 |
+
requests-oauthlib==1.3.1
|
80 |
+
resampy==0.4.2
|
81 |
+
rsa==4.9
|
82 |
+
scikit-image==0.19.3
|
83 |
+
scikit-learn==1.1.3
|
84 |
+
scipy==1.9.3
|
85 |
+
six==1.16.0
|
86 |
+
soundfile==0.11.0
|
87 |
+
stack-data==0.6.1
|
88 |
+
tensorboard==3.0.0
|
89 |
+
tensorboard-data-server==0.6.1
|
90 |
+
tensorboard-plugin-wit==1.8.1
|
91 |
+
threadpoolctl==3.1.0
|
92 |
+
tifffile==2022.10.10
|
93 |
+
tqdm==4.64.1
|
94 |
+
traitlets==5.5.0
|
95 |
+
typeguard==2.13.3
|
96 |
+
typing_extensions==4.4.0
|
97 |
+
urllib3==1.26.12
|
98 |
+
utils==1.0.1
|
99 |
+
wcwidth==0.2.5
|
100 |
+
webrtcvad==2.0.10
|
101 |
+
Werkzeug==2.2.2
|
102 |
+
yarl==1.8.1
|
103 |
+
zipp==3.10.0
|
train.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from argparse import ArgumentParser
|
2 |
+
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import pytorch_lightning as pl
|
5 |
+
import torch
|
6 |
+
import wandb
|
7 |
+
from loguru import logger
|
8 |
+
from mmengine import Config
|
9 |
+
from mmengine.optim import OPTIMIZERS
|
10 |
+
from pytorch_lightning.loggers import TensorBoardLogger, WandbLogger
|
11 |
+
from torch.utils.data import DataLoader
|
12 |
+
|
13 |
+
from fish_diffusion.archs.diffsinger import DiffSinger
|
14 |
+
from fish_diffusion.datasets import DATASETS
|
15 |
+
from fish_diffusion.datasets.repeat import RepeatDataset
|
16 |
+
from fish_diffusion.utils.scheduler import LR_SCHEUDLERS
|
17 |
+
from fish_diffusion.utils.viz import viz_synth_sample
|
18 |
+
from fish_diffusion.vocoders import VOCODERS
|
19 |
+
|
20 |
+
|
21 |
+
class FishDiffusion(pl.LightningModule):
|
22 |
+
def __init__(self, config):
|
23 |
+
super().__init__()
|
24 |
+
self.save_hyperparameters()
|
25 |
+
|
26 |
+
self.model = DiffSinger(config.model)
|
27 |
+
self.config = config
|
28 |
+
|
29 |
+
# 音频编码器, 将梅尔谱转换为音频
|
30 |
+
self.vocoder = VOCODERS.build(config.model.vocoder)
|
31 |
+
self.vocoder.freeze()
|
32 |
+
|
33 |
+
def configure_optimizers(self):
|
34 |
+
self.config.optimizer.params = self.parameters()
|
35 |
+
optimizer = OPTIMIZERS.build(self.config.optimizer)
|
36 |
+
|
37 |
+
self.config.scheduler.optimizer = optimizer
|
38 |
+
scheduler = LR_SCHEUDLERS.build(self.config.scheduler)
|
39 |
+
|
40 |
+
return [optimizer], dict(scheduler=scheduler, interval="step")
|
41 |
+
|
42 |
+
def _step(self, batch, batch_idx, mode):
|
43 |
+
assert batch["pitches"].shape[1] == batch["mels"].shape[1]
|
44 |
+
|
45 |
+
pitches = batch["pitches"].clone()
|
46 |
+
batch_size = batch["speakers"].shape[0]
|
47 |
+
|
48 |
+
output = self.model(
|
49 |
+
speakers=batch["speakers"],
|
50 |
+
contents=batch["contents"],
|
51 |
+
src_lens=batch["content_lens"],
|
52 |
+
max_src_len=batch["max_content_len"],
|
53 |
+
mels=batch["mels"],
|
54 |
+
mel_lens=batch["mel_lens"],
|
55 |
+
max_mel_len=batch["max_mel_len"],
|
56 |
+
pitches=batch["pitches"],
|
57 |
+
)
|
58 |
+
|
59 |
+
self.log(f"{mode}_loss", output["loss"], batch_size=batch_size, sync_dist=True)
|
60 |
+
|
61 |
+
if mode != "valid":
|
62 |
+
return output["loss"]
|
63 |
+
|
64 |
+
x = self.model.diffusion(output["features"])
|
65 |
+
|
66 |
+
for idx, (gt_mel, gt_pitch, predict_mel, predict_mel_len) in enumerate(
|
67 |
+
zip(batch["mels"], pitches, x, batch["mel_lens"])
|
68 |
+
):
|
69 |
+
image_mels, wav_reconstruction, wav_prediction = viz_synth_sample(
|
70 |
+
gt_mel=gt_mel,
|
71 |
+
gt_pitch=gt_pitch,
|
72 |
+
predict_mel=predict_mel,
|
73 |
+
predict_mel_len=predict_mel_len,
|
74 |
+
vocoder=self.vocoder,
|
75 |
+
return_image=False,
|
76 |
+
)
|
77 |
+
|
78 |
+
wav_reconstruction = wav_reconstruction.to(torch.float32).cpu().numpy()
|
79 |
+
wav_prediction = wav_prediction.to(torch.float32).cpu().numpy()
|
80 |
+
|
81 |
+
# WanDB logger
|
82 |
+
if isinstance(self.logger, WandbLogger):
|
83 |
+
self.logger.experiment.log(
|
84 |
+
{
|
85 |
+
f"reconstruction_mel": wandb.Image(image_mels, caption="mels"),
|
86 |
+
f"wavs": [
|
87 |
+
wandb.Audio(
|
88 |
+
wav_reconstruction,
|
89 |
+
sample_rate=44100,
|
90 |
+
caption=f"reconstruction (gt)",
|
91 |
+
),
|
92 |
+
wandb.Audio(
|
93 |
+
wav_prediction,
|
94 |
+
sample_rate=44100,
|
95 |
+
caption=f"prediction",
|
96 |
+
),
|
97 |
+
],
|
98 |
+
},
|
99 |
+
)
|
100 |
+
|
101 |
+
# TensorBoard logger
|
102 |
+
if isinstance(self.logger, TensorBoardLogger):
|
103 |
+
self.logger.experiment.add_figure(
|
104 |
+
f"sample-{idx}/mels",
|
105 |
+
image_mels,
|
106 |
+
global_step=self.global_step,
|
107 |
+
)
|
108 |
+
self.logger.experiment.add_audio(
|
109 |
+
f"sample-{idx}/wavs/gt",
|
110 |
+
wav_reconstruction,
|
111 |
+
self.global_step,
|
112 |
+
sample_rate=44100,
|
113 |
+
)
|
114 |
+
self.logger.experiment.add_audio(
|
115 |
+
f"sample-{idx}/wavs/prediction",
|
116 |
+
wav_prediction,
|
117 |
+
self.global_step,
|
118 |
+
sample_rate=44100,
|
119 |
+
)
|
120 |
+
|
121 |
+
if isinstance(image_mels, plt.Figure):
|
122 |
+
plt.close(image_mels)
|
123 |
+
|
124 |
+
return output["loss"]
|
125 |
+
|
126 |
+
def training_step(self, batch, batch_idx):
|
127 |
+
return self._step(batch, batch_idx, mode="train")
|
128 |
+
|
129 |
+
def validation_step(self, batch, batch_idx):
|
130 |
+
return self._step(batch, batch_idx, mode="valid")
|
131 |
+
|
132 |
+
|
133 |
+
if __name__ == "__main__":
|
134 |
+
pl.seed_everything(42, workers=True)
|
135 |
+
|
136 |
+
parser = ArgumentParser()
|
137 |
+
parser.add_argument("--config", type=str, required=True)
|
138 |
+
parser.add_argument("--resume", type=str, default=None)
|
139 |
+
parser.add_argument(
|
140 |
+
"--tensorboard",
|
141 |
+
action="store_true",
|
142 |
+
default=False,
|
143 |
+
help="Use tensorboard logger, default is wandb.",
|
144 |
+
)
|
145 |
+
parser.add_argument("--resume-id", type=str, default=None, help="Wandb run id.")
|
146 |
+
parser.add_argument("--entity", type=str, default=None, help="Wandb entity.")
|
147 |
+
parser.add_argument("--name", type=str, default=None, help="Wandb run name.")
|
148 |
+
parser.add_argument(
|
149 |
+
"--pretrained", type=str, default=None, help="Pretrained model."
|
150 |
+
)
|
151 |
+
parser.add_argument(
|
152 |
+
"--only-train-speaker-embeddings",
|
153 |
+
action="store_true",
|
154 |
+
default=False,
|
155 |
+
help="Only train speaker embeddings.",
|
156 |
+
)
|
157 |
+
|
158 |
+
args = parser.parse_args()
|
159 |
+
|
160 |
+
cfg = Config.fromfile(args.config)
|
161 |
+
|
162 |
+
model = FishDiffusion(cfg)
|
163 |
+
|
164 |
+
# We only load the state_dict of the model, not the optimizer.
|
165 |
+
if args.pretrained:
|
166 |
+
state_dict = torch.load(args.pretrained, map_location="cpu")
|
167 |
+
if "state_dict" in state_dict:
|
168 |
+
state_dict = state_dict["state_dict"]
|
169 |
+
|
170 |
+
result = model.load_state_dict(state_dict, strict=False)
|
171 |
+
|
172 |
+
missing_keys = set(result.missing_keys)
|
173 |
+
unexpected_keys = set(result.unexpected_keys)
|
174 |
+
|
175 |
+
# Make sure incorrect keys are just noise predictor keys.
|
176 |
+
unexpected_keys = unexpected_keys - set(
|
177 |
+
i.replace(".naive_noise_predictor.", ".") for i in missing_keys
|
178 |
+
)
|
179 |
+
|
180 |
+
assert len(unexpected_keys) == 0
|
181 |
+
|
182 |
+
if args.only_train_speaker_embeddings:
|
183 |
+
for name, param in model.named_parameters():
|
184 |
+
if "speaker_encoder" not in name:
|
185 |
+
param.requires_grad = False
|
186 |
+
|
187 |
+
logger.info(
|
188 |
+
"Only train speaker embeddings, all other parameters are frozen."
|
189 |
+
)
|
190 |
+
|
191 |
+
logger = (
|
192 |
+
TensorBoardLogger("logs", name=cfg.model.type)
|
193 |
+
if args.tensorboard
|
194 |
+
else WandbLogger(
|
195 |
+
project=cfg.model.type,
|
196 |
+
save_dir="logs",
|
197 |
+
log_model=True,
|
198 |
+
name=args.name,
|
199 |
+
entity=args.entity,
|
200 |
+
resume="must" if args.resume_id else False,
|
201 |
+
id=args.resume_id,
|
202 |
+
)
|
203 |
+
)
|
204 |
+
|
205 |
+
trainer = pl.Trainer(
|
206 |
+
logger=logger,
|
207 |
+
**cfg.trainer,
|
208 |
+
)
|
209 |
+
|
210 |
+
train_dataset = DATASETS.build(cfg.dataset.train)
|
211 |
+
train_loader = DataLoader(
|
212 |
+
train_dataset,
|
213 |
+
collate_fn=train_dataset.collate_fn,
|
214 |
+
**cfg.dataloader.train,
|
215 |
+
)
|
216 |
+
|
217 |
+
valid_dataset = DATASETS.build(cfg.dataset.valid)
|
218 |
+
valid_dataset = RepeatDataset(
|
219 |
+
valid_dataset, repeat=trainer.num_devices, collate_fn=valid_dataset.collate_fn
|
220 |
+
)
|
221 |
+
|
222 |
+
valid_loader = DataLoader(
|
223 |
+
valid_dataset,
|
224 |
+
collate_fn=valid_dataset.collate_fn,
|
225 |
+
**cfg.dataloader.valid,
|
226 |
+
)
|
227 |
+
|
228 |
+
trainer.fit(model, train_loader, valid_loader, ckpt_path=args.resume)
|
tst
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
python inference.py --config configs\svc_cn_hubert_soft_finetune_crepe.py --checkpoint checkpoints\epoch=909-step=20000-valid_loss=0.23.ckpt--gradio
|
开始处理.bat
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
@echo off
|
2 |
+
env310\python.exe train.py --config configs/train_my_config.py --pretrained checkpoints\hubert\cn-hubert-soft-600-singers-pretrained-v1.ckpt
|
3 |
+
|
4 |
+
pause
|