Spaces:
Runtime error
Runtime error
Updated app, added video generation and model files
Browse files- app.py +205 -1
- generate_videos.py +259 -0
- model/sg2_model.py +780 -0
app.py
CHANGED
@@ -1,3 +1,207 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
import gradio as gr
|
5 |
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
from e4e.models.psp import pSp
|
11 |
+
from util import *
|
12 |
+
from huggingface_hub import hf_hub_download
|
13 |
+
|
14 |
+
import os
|
15 |
+
import sys
|
16 |
+
import tempfile
|
17 |
+
import shutil
|
18 |
+
from argparse import Namespace
|
19 |
+
from pathlib import Path
|
20 |
+
|
21 |
+
import dlib
|
22 |
+
import numpy as np
|
23 |
+
import torchvision.transforms as transforms
|
24 |
+
from torchvision import utils
|
25 |
+
from PIL import Image
|
26 |
+
|
27 |
+
from model.sg2_model import Generator
|
28 |
+
from generate_videos import generate_frames, video_from_interpolations, vid_to_gif
|
29 |
+
|
30 |
+
model_dir = "models"
|
31 |
+
os.makedirs(model_dir, exist_ok=True)
|
32 |
+
|
33 |
+
models_and_paths = {"akhaliq/JoJoGAN_e4e_ffhq_encode": "e4e_ffhq_encode.pt",
|
34 |
+
"akhaliq/jojogan_dlib": "shape_predictor_68_face_landmarks.dat",
|
35 |
+
"akhaliq/jojogan-stylegan2-ffhq-config-f": f"{model_dir}/base.pt"}
|
36 |
+
|
37 |
+
def get_models():
|
38 |
+
for repo_id, file_path in models_and_paths:
|
39 |
+
hf_hub_download(repo_id=repo_id, filename=file_path)
|
40 |
+
|
41 |
+
model_list = ['base'] + [Path(model_ckpt).stem for model_ckpt in os.listdir(model_dir) if not 'base' in model_ckpt]
|
42 |
+
|
43 |
+
return model_list
|
44 |
+
|
45 |
+
model_list = get_models()
|
46 |
+
|
47 |
+
class ImageEditor(object):
|
48 |
+
def __init__(self):
|
49 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
50 |
+
|
51 |
+
latent_size = 512
|
52 |
+
n_mlp = 8
|
53 |
+
channel_mult = 2
|
54 |
+
model_size = 1024
|
55 |
+
|
56 |
+
self.generators = {}
|
57 |
+
|
58 |
+
for model in model_list:
|
59 |
+
g_ema = Generator(
|
60 |
+
model_size, latent_size, n_mlp, channel_multiplier=channel_mult
|
61 |
+
).to(self.device)
|
62 |
+
|
63 |
+
checkpoint = torch.load(f"models/{model}.pt")
|
64 |
+
|
65 |
+
g_ema.load_state_dict(checkpoint['g_ema'])
|
66 |
+
|
67 |
+
self.generators[model] = g_ema
|
68 |
+
|
69 |
+
self.experiment_args = {"model_path": "e4e_ffhq_encode.pt"}
|
70 |
+
self.experiment_args["transform"] = transforms.Compose(
|
71 |
+
[
|
72 |
+
transforms.Resize((256, 256)),
|
73 |
+
transforms.ToTensor(),
|
74 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
|
75 |
+
]
|
76 |
+
)
|
77 |
+
self.resize_dims = (256, 256)
|
78 |
+
|
79 |
+
model_path = self.experiment_args["model_path"]
|
80 |
+
|
81 |
+
ckpt = torch.load(model_path, map_location="cpu")
|
82 |
+
opts = ckpt["opts"]
|
83 |
+
|
84 |
+
opts["checkpoint_path"] = model_path
|
85 |
+
opts = Namespace(**opts)
|
86 |
+
|
87 |
+
self.e4e_net = pSp(opts)
|
88 |
+
self.e4e_net.eval()
|
89 |
+
self.e4e_net.cuda()
|
90 |
+
|
91 |
+
self.shape_predictor = dlib.shape_predictor(
|
92 |
+
models_and_paths["akhaliq/jojogan_dlib"]
|
93 |
+
)
|
94 |
+
|
95 |
+
print("setup complete")
|
96 |
+
|
97 |
+
def get_style_list(self):
|
98 |
+
style_list = ['all', 'list - enter below']
|
99 |
+
|
100 |
+
for key in self.generators:
|
101 |
+
style_list.append(key)
|
102 |
+
|
103 |
+
return style_list
|
104 |
+
|
105 |
+
def predict(
|
106 |
+
self,
|
107 |
+
input, # Input image path
|
108 |
+
output_style, # Which output style do you want to use?
|
109 |
+
style_list, # Comma seperated list of models to use. Only accepts models from the output_style list
|
110 |
+
generate_video, # Generate a video instead of an output image
|
111 |
+
with_editing, # Apply latent space editing to the generated video
|
112 |
+
video_format # Choose gif to display in browser, mp4 for higher-quality downloadable video
|
113 |
+
):
|
114 |
+
|
115 |
+
if output_style == 'all':
|
116 |
+
styles = model_list
|
117 |
+
elif output_style == 'list - enter below':
|
118 |
+
styles = style_list.split(",")
|
119 |
+
for style in styles:
|
120 |
+
if style not in model_list:
|
121 |
+
raise ValueError(f"Encountered style '{style}' in the style_list which is not an available option.")
|
122 |
+
else:
|
123 |
+
styles = [output_style]
|
124 |
+
|
125 |
+
# @title Align image
|
126 |
+
input_image = self.run_alignment(str(input))
|
127 |
+
|
128 |
+
input_image = input_image.resize(self.resize_dims)
|
129 |
+
|
130 |
+
img_transforms = self.experiment_args["transform"]
|
131 |
+
transformed_image = img_transforms(input_image)
|
132 |
+
|
133 |
+
with torch.no_grad():
|
134 |
+
images, latents = self.run_on_batch(transformed_image.unsqueeze(0))
|
135 |
+
result_image, latent = images[0], latents[0]
|
136 |
+
|
137 |
+
inverted_latent = latent.unsqueeze(0).unsqueeze(1)
|
138 |
+
out_dir = Path(tempfile.mkdtemp())
|
139 |
+
out_path = out_dir / "out.jpg"
|
140 |
+
|
141 |
+
generators = [self.generators[style] for style in styles]
|
142 |
+
|
143 |
+
if not generate_video:
|
144 |
+
with torch.no_grad():
|
145 |
+
img_list = []
|
146 |
+
for g_ema in generators:
|
147 |
+
img, _ = g_ema(inverted_latent, input_is_latent=True, truncation=1, randomize_noise=False)
|
148 |
+
img_list.append(img)
|
149 |
+
|
150 |
+
out_img = torch.cat(img_list, axis=0)
|
151 |
+
utils.save_image(out_img, out_path, nrow=int(np.sqrt(out_img.size(0))), normalize=True, scale_each=True, range=(-1, 1))
|
152 |
+
|
153 |
+
return Path(out_path)
|
154 |
+
|
155 |
+
return self.generate_vid(generators, inverted_latent, out_dir, video_format, with_editing)
|
156 |
+
|
157 |
+
def generate_vid(self, generators, latent, out_dir, video_format, with_editing):
|
158 |
+
np_latent = latent.squeeze(0).cpu().detach().numpy()
|
159 |
+
args = {
|
160 |
+
'fps': 24,
|
161 |
+
'target_latents': None,
|
162 |
+
'edit_directions': None,
|
163 |
+
'unedited_frames': 0 if with_editing else 40 * (len(generators) - 1)
|
164 |
+
}
|
165 |
+
|
166 |
+
args = Namespace(**args)
|
167 |
+
with tempfile.TemporaryDirectory() as dirpath:
|
168 |
+
|
169 |
+
generate_frames(args, np_latent, generators, dirpath)
|
170 |
+
video_from_interpolations(args.fps, dirpath)
|
171 |
+
|
172 |
+
gen_path = Path(dirpath) / "out.mp4"
|
173 |
+
out_path = out_dir / f"out.{video_format}"
|
174 |
+
|
175 |
+
if video_format == 'gif':
|
176 |
+
vid_to_gif(gen_path, out_dir, scale=256, fps=args.fps)
|
177 |
+
else:
|
178 |
+
shutil.copy2(gen_path, out_path)
|
179 |
+
|
180 |
+
return out_path
|
181 |
+
|
182 |
+
def run_alignment(self, image_path):
|
183 |
+
aligned_image = align_face(filepath=image_path, predictor=self.shape_predictor)
|
184 |
+
print("Aligned image has shape: {}".format(aligned_image.size))
|
185 |
+
return aligned_image
|
186 |
+
|
187 |
+
def run_on_batch(self, inputs):
|
188 |
+
images, latents = self.e4e_net(
|
189 |
+
inputs.to("cuda").float(), randomize_noise=False, return_latents=True
|
190 |
+
)
|
191 |
+
return images, latents
|
192 |
+
|
193 |
+
editor = ImageEditor()
|
194 |
+
|
195 |
+
title = "StyleGAN-NADA"
|
196 |
+
description = "Gradio Demo for StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators (SIGGRAPH 2022). To use it, upload your image and select a target style. More information about the paper and training new models can be found below."
|
197 |
+
|
198 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.00946' target='_blank'>StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators</a> | <a href='https://stylegan-nada.github.io/' target='_blank'>Project Page</a> | <a href='https://github.com/rinongal/StyleGAN-nada' target='_blank'>Code</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=rinong_sgnada' alt='visitor badge'></center>"
|
199 |
+
|
200 |
+
gr.Interface(editor.predict, [gr.inputs.Image(type="pil"),
|
201 |
+
gr.inputs.Dropdown(choices=editor.get_style_list(), type="value", default='base', label="Model"),
|
202 |
+
gr.inputs.Textbox(lines=1, placeholder=None, default="joker,anime,modigliani", label="Style List", optional=True),
|
203 |
+
gr.inputs.Checkbox(default=False, label="Generate Video?", optional=False),
|
204 |
+
gr.inputs.Checkbox(default=False, label="With Editing?", optional=False),
|
205 |
+
gr.inputs.Radio(choices=["gif", "mp4"], type="value", default='mp4', label="Video Format")],
|
206 |
+
gr.outputs.Image(type="file"), title=title, description=description, article=article, allow_flagging=False, allow_screenshot=False).launch()
|
207 |
+
|
generate_videos.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
Tool for generating editing videos across different domains.
|
3 |
+
|
4 |
+
Given a set of latent codes and pre-trained models, it will interpolate between the different codes in each of the target domains
|
5 |
+
and combine the resulting images into a video.
|
6 |
+
|
7 |
+
Example run command:
|
8 |
+
|
9 |
+
python generate_videos.py --ckpt /model_dir/pixar.pt \
|
10 |
+
/model_dir/ukiyoe.pt \
|
11 |
+
/model_dir/edvard_munch.pt \
|
12 |
+
/model_dir/botero.pt \
|
13 |
+
--out_dir /output/video/ \
|
14 |
+
--source_latent /latents/latent000.npy \
|
15 |
+
--target_latents /latents/
|
16 |
+
|
17 |
+
'''
|
18 |
+
|
19 |
+
import os
|
20 |
+
import argparse
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from torchvision import utils
|
24 |
+
|
25 |
+
from model.sg2_model import Generator
|
26 |
+
from tqdm import tqdm
|
27 |
+
from pathlib import Path
|
28 |
+
|
29 |
+
import numpy as np
|
30 |
+
|
31 |
+
import subprocess
|
32 |
+
import shutil
|
33 |
+
import copy
|
34 |
+
|
35 |
+
VALID_EDITS = ["pose", "age", "smile", "gender", "hair_length", "beard"]
|
36 |
+
|
37 |
+
SUGGESTED_DISTANCES = {
|
38 |
+
"pose": (3.0, -3.0),
|
39 |
+
"smile": (2.0, -2.0),
|
40 |
+
"age": (4.0, -4.0),
|
41 |
+
"gender": (3.0, -3.0),
|
42 |
+
"hair_length": (None, -4.0),
|
43 |
+
"beard": (2.0, None)
|
44 |
+
}
|
45 |
+
|
46 |
+
def project_code(latent_code, boundary, distance=3.0):
|
47 |
+
|
48 |
+
if len(boundary) == 2:
|
49 |
+
boundary = boundary.reshape(1, 1, -1)
|
50 |
+
|
51 |
+
return latent_code + distance * boundary
|
52 |
+
|
53 |
+
def generate_frames(args, source_latent, g_ema_list, output_dir):
|
54 |
+
|
55 |
+
alphas = np.linspace(0, 1, num=20)
|
56 |
+
|
57 |
+
interpolate_func = interpolate_with_boundaries # default
|
58 |
+
if args.target_latents: # if provided with targets
|
59 |
+
interpolate_func = interpolate_with_target_latents
|
60 |
+
if args.unedited_frames: # if only interpolating through generators
|
61 |
+
interpolate_func = duplicate_latent
|
62 |
+
|
63 |
+
latents = interpolate_func(args, source_latent, alphas)
|
64 |
+
|
65 |
+
segments = len(g_ema_list) - 1
|
66 |
+
if segments:
|
67 |
+
segment_length = len(latents) / segments
|
68 |
+
|
69 |
+
g_ema = copy.deepcopy(g_ema_list[0])
|
70 |
+
|
71 |
+
src_pars = dict(g_ema.named_parameters())
|
72 |
+
mix_pars = [dict(model.named_parameters()) for model in g_ema_list]
|
73 |
+
else:
|
74 |
+
g_ema = g_ema_list[0]
|
75 |
+
|
76 |
+
print("Generating frames for video...")
|
77 |
+
for idx, latent in tqdm(enumerate(latents), total=len(latents)):
|
78 |
+
|
79 |
+
if segments:
|
80 |
+
mix_alpha = (idx % segment_length) * 1.0 / segment_length
|
81 |
+
segment_id = int(idx // segment_length)
|
82 |
+
|
83 |
+
for k in src_pars.keys():
|
84 |
+
src_pars[k].data.copy_(mix_pars[segment_id][k] * (1 - mix_alpha) + mix_pars[segment_id + 1][k] * mix_alpha)
|
85 |
+
|
86 |
+
if idx == 0 or segments or latent is not latents[idx - 1]:
|
87 |
+
w = torch.from_numpy(latent).float().cuda()
|
88 |
+
|
89 |
+
with torch.no_grad():
|
90 |
+
img, _ = g_ema([w], input_is_latent=True, truncation=1, randomize_noise=False)
|
91 |
+
|
92 |
+
utils.save_image(img, f"{output_dir}/{str(idx).zfill(3)}.jpg", nrow=1, normalize=True, scale_each=True, range=(-1, 1))
|
93 |
+
|
94 |
+
def interpolate_forward_backward(source_latent, target_latent, alphas):
|
95 |
+
latents_forward = [a * target_latent + (1-a) * source_latent for a in alphas] # interpolate from source to target
|
96 |
+
latents_backward = latents_forward[::-1] # interpolate from target to source
|
97 |
+
return latents_forward + [target_latent] * 20 + latents_backward # forward + short delay at target + return
|
98 |
+
|
99 |
+
def duplicate_latent(args, source_latent, alphas):
|
100 |
+
return [source_latent for _ in range(args.unedited_frames)]
|
101 |
+
|
102 |
+
def interpolate_with_boundaries(args, source_latent, alphas):
|
103 |
+
edit_directions = args.edit_directions or ['pose', 'smile', 'gender', 'age', 'hair_length']
|
104 |
+
|
105 |
+
# interpolate latent codes with all targets
|
106 |
+
|
107 |
+
print("Interpolating latent codes...")
|
108 |
+
|
109 |
+
boundary_dir = Path(os.path.abspath(__file__)).parents[1].joinpath("editing", "interfacegan_boundaries")
|
110 |
+
|
111 |
+
boundaries_and_distances = []
|
112 |
+
for direction_type in edit_directions:
|
113 |
+
distances = SUGGESTED_DISTANCES[direction_type]
|
114 |
+
boundary = torch.load(os.path.join(boundary_dir, f'{direction_type}.pt')).cpu().detach().numpy()
|
115 |
+
|
116 |
+
for distance in distances:
|
117 |
+
if distance:
|
118 |
+
boundaries_and_distances.append((boundary, distance))
|
119 |
+
|
120 |
+
latents = []
|
121 |
+
for boundary, distance in boundaries_and_distances:
|
122 |
+
|
123 |
+
target_latent = project_code(source_latent, boundary, distance)
|
124 |
+
latents.extend(interpolate_forward_backward(source_latent, target_latent, alphas))
|
125 |
+
|
126 |
+
return latents
|
127 |
+
|
128 |
+
def interpolate_with_target_latents(args, source_latent, alphas):
|
129 |
+
# interpolate latent codes with all targets
|
130 |
+
|
131 |
+
print("Interpolating latent codes...")
|
132 |
+
|
133 |
+
latents = []
|
134 |
+
for target_latent_path in args.target_latents:
|
135 |
+
|
136 |
+
if target_latent_path == args.source_latent:
|
137 |
+
continue
|
138 |
+
|
139 |
+
target_latent = np.load(target_latent_path, allow_pickle=True)
|
140 |
+
|
141 |
+
latents.extend(interpolate_forward_backward(source_latent, target_latent, alphas))
|
142 |
+
|
143 |
+
return latents
|
144 |
+
|
145 |
+
def video_from_interpolations(fps, output_dir):
|
146 |
+
|
147 |
+
# combine frames to a video
|
148 |
+
command = ["ffmpeg",
|
149 |
+
"-r", f"{fps}",
|
150 |
+
"-i", f"{output_dir}/%03d.jpg",
|
151 |
+
"-c:v", "libx264",
|
152 |
+
"-vf", f"fps={fps}",
|
153 |
+
"-pix_fmt", "yuv420p",
|
154 |
+
f"{output_dir}/out.mp4"]
|
155 |
+
|
156 |
+
subprocess.call(command)
|
157 |
+
|
158 |
+
def merge_videos(output_dir, num_subdirs):
|
159 |
+
|
160 |
+
output_file = os.path.join(output_dir, "combined.mp4")
|
161 |
+
|
162 |
+
if num_subdirs == 1: # if we only have one video, just copy it over
|
163 |
+
shutil.copy2(os.path.join(output_dir, str(0), "out.mp4"), output_file)
|
164 |
+
else: # otherwise merge using ffmpeg
|
165 |
+
command = ["ffmpeg"]
|
166 |
+
for dir in range(num_subdirs):
|
167 |
+
command.extend(['-i', os.path.join(output_dir, str(dir), "out.mp4")])
|
168 |
+
|
169 |
+
sqrt_subdirs = int(num_subdirs ** .5)
|
170 |
+
|
171 |
+
if (sqrt_subdirs ** 2) != num_subdirs:
|
172 |
+
raise ValueError("Number of checkpoints cannot be arranged in a square grid")
|
173 |
+
|
174 |
+
command.append("-filter_complex")
|
175 |
+
|
176 |
+
filter_string = ""
|
177 |
+
vstack_string = ""
|
178 |
+
for row in range(sqrt_subdirs):
|
179 |
+
row_str = ""
|
180 |
+
for col in range(sqrt_subdirs):
|
181 |
+
row_str += f"[{row * sqrt_subdirs + col}:v]"
|
182 |
+
|
183 |
+
letter = chr(ord('A')+row)
|
184 |
+
row_str += f"hstack=inputs={sqrt_subdirs}[{letter}];"
|
185 |
+
vstack_string += f"[{letter}]"
|
186 |
+
|
187 |
+
filter_string += row_str
|
188 |
+
|
189 |
+
vstack_string += f"vstack=inputs={sqrt_subdirs}[out]"
|
190 |
+
filter_string += vstack_string
|
191 |
+
|
192 |
+
command.extend([filter_string, "-map", "[out]", output_file])
|
193 |
+
|
194 |
+
subprocess.call(command)
|
195 |
+
|
196 |
+
def vid_to_gif(vid_path, output_dir, scale=256, fps=35):
|
197 |
+
|
198 |
+
command = ["ffmpeg",
|
199 |
+
"-i", f"{vid_path}",
|
200 |
+
"-vf", f"fps={fps},scale={scale}:-1:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1]fifo[s2];[s2][p]paletteuse",
|
201 |
+
"-loop", "0",
|
202 |
+
f"{output_dir}/out.gif"]
|
203 |
+
|
204 |
+
subprocess.call(command)
|
205 |
+
|
206 |
+
|
207 |
+
if __name__ == '__main__':
|
208 |
+
device = 'cuda'
|
209 |
+
|
210 |
+
parser = argparse.ArgumentParser()
|
211 |
+
|
212 |
+
parser.add_argument('--size', type=int, default=1024)
|
213 |
+
parser.add_argument('--ckpt', type=str, nargs="+", required=True, help="Path to one or more pre-trained generator checkpoints.")
|
214 |
+
parser.add_argument('--channel_multiplier', type=int, default=2)
|
215 |
+
parser.add_argument('--out_dir', type=str, required=True, help="Directory where output files will be placed")
|
216 |
+
parser.add_argument('--source_latent', type=str, required=True, help="Path to an .npy file containing an initial latent code")
|
217 |
+
parser.add_argument('--target_latents', nargs="+", type=str, help="A list of paths to .npy files containing target latent codes to interpolate towards, or a directory containing such .npy files.")
|
218 |
+
parser.add_argument('--force', '-f', action='store_true', help="Force run with non-empty directory. Image files not overwritten by the proccess may still be included in the final video")
|
219 |
+
parser.add_argument('--fps', default=35, type=int, help='Frames per second in the generated videos.')
|
220 |
+
parser.add_argument('--edit_directions', nargs="+", type=str, help=f"A list of edit directions to use in video generation (if not using a target latent directory). Available directions are: {VALID_EDITS}")
|
221 |
+
parser.add_argument('--unedited_frames', type=int, default=0, help="Used to generate videos with no latent editing. If set to a positive number and target_latents is not provided, will simply duplicate the initial frame <unedited_frames> times.")
|
222 |
+
|
223 |
+
args = parser.parse_args()
|
224 |
+
|
225 |
+
os.makedirs(args.out_dir, exist_ok=True)
|
226 |
+
|
227 |
+
if not args.force and os.listdir(args.out_dir):
|
228 |
+
print("Output directory is not empty. Either delete the directory content or re-run with -f.")
|
229 |
+
exit(0)
|
230 |
+
|
231 |
+
if args.target_latents and len(args.target_latents) == 1 and os.path.isdir(args.target_latents[0]):
|
232 |
+
args.target_latents = [os.path.join(args.target_latents[0], file_name) for file_name in os.listdir(args.target_latents[0]) if file_name.endswith(".npy")]
|
233 |
+
args.target_latents = sorted(args.target_latents)
|
234 |
+
|
235 |
+
args.latent = 512
|
236 |
+
args.n_mlp = 8
|
237 |
+
|
238 |
+
g_ema = Generator(
|
239 |
+
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
|
240 |
+
).to(device)
|
241 |
+
|
242 |
+
source_latent = np.load(args.source_latent, allow_pickle=True)
|
243 |
+
|
244 |
+
for idx, ckpt_path in enumerate(args.ckpt):
|
245 |
+
print(f"Generating video using checkpoint: {ckpt_path}")
|
246 |
+
checkpoint = torch.load(ckpt_path)
|
247 |
+
|
248 |
+
g_ema.load_state_dict(checkpoint['g_ema'])
|
249 |
+
|
250 |
+
output_dir = os.path.join(args.out_dir, str(idx))
|
251 |
+
os.makedirs(output_dir)
|
252 |
+
|
253 |
+
generate_frames(args, source_latent, [g_ema], output_dir)
|
254 |
+
video_from_interpolations(args.fps, output_dir)
|
255 |
+
|
256 |
+
merge_videos(args.out_dir, len(args.ckpt))
|
257 |
+
|
258 |
+
|
259 |
+
|
model/sg2_model.py
ADDED
@@ -0,0 +1,780 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import random
|
3 |
+
import functools
|
4 |
+
import operator
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import functional as F
|
9 |
+
from torch.autograd import Function
|
10 |
+
|
11 |
+
from op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d, conv2d_gradfix
|
12 |
+
|
13 |
+
|
14 |
+
class PixelNorm(nn.Module):
|
15 |
+
def __init__(self):
|
16 |
+
super().__init__()
|
17 |
+
|
18 |
+
def forward(self, input):
|
19 |
+
return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
|
20 |
+
|
21 |
+
|
22 |
+
def make_kernel(k):
|
23 |
+
k = torch.tensor(k, dtype=torch.float32)
|
24 |
+
|
25 |
+
if k.ndim == 1:
|
26 |
+
k = k[None, :] * k[:, None]
|
27 |
+
|
28 |
+
k /= k.sum()
|
29 |
+
|
30 |
+
return k
|
31 |
+
|
32 |
+
|
33 |
+
class Upsample(nn.Module):
|
34 |
+
def __init__(self, kernel, factor=2):
|
35 |
+
super().__init__()
|
36 |
+
|
37 |
+
self.factor = factor
|
38 |
+
kernel = make_kernel(kernel) * (factor ** 2)
|
39 |
+
self.register_buffer("kernel", kernel)
|
40 |
+
|
41 |
+
p = kernel.shape[0] - factor
|
42 |
+
|
43 |
+
pad0 = (p + 1) // 2 + factor - 1
|
44 |
+
pad1 = p // 2
|
45 |
+
|
46 |
+
self.pad = (pad0, pad1)
|
47 |
+
|
48 |
+
def forward(self, input):
|
49 |
+
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad)
|
50 |
+
|
51 |
+
return out
|
52 |
+
|
53 |
+
|
54 |
+
class Downsample(nn.Module):
|
55 |
+
def __init__(self, kernel, factor=2):
|
56 |
+
super().__init__()
|
57 |
+
|
58 |
+
self.factor = factor
|
59 |
+
kernel = make_kernel(kernel)
|
60 |
+
self.register_buffer("kernel", kernel)
|
61 |
+
|
62 |
+
p = kernel.shape[0] - factor
|
63 |
+
|
64 |
+
pad0 = (p + 1) // 2
|
65 |
+
pad1 = p // 2
|
66 |
+
|
67 |
+
self.pad = (pad0, pad1)
|
68 |
+
|
69 |
+
def forward(self, input):
|
70 |
+
out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad)
|
71 |
+
|
72 |
+
return out
|
73 |
+
|
74 |
+
|
75 |
+
class Blur(nn.Module):
|
76 |
+
def __init__(self, kernel, pad, upsample_factor=1):
|
77 |
+
super().__init__()
|
78 |
+
|
79 |
+
kernel = make_kernel(kernel)
|
80 |
+
|
81 |
+
if upsample_factor > 1:
|
82 |
+
kernel = kernel * (upsample_factor ** 2)
|
83 |
+
|
84 |
+
self.register_buffer("kernel", kernel)
|
85 |
+
|
86 |
+
self.pad = pad
|
87 |
+
|
88 |
+
def forward(self, input):
|
89 |
+
out = upfirdn2d(input, self.kernel, pad=self.pad)
|
90 |
+
|
91 |
+
return out
|
92 |
+
|
93 |
+
|
94 |
+
class EqualConv2d(nn.Module):
|
95 |
+
def __init__(
|
96 |
+
self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
|
97 |
+
):
|
98 |
+
super().__init__()
|
99 |
+
|
100 |
+
self.weight = nn.Parameter(
|
101 |
+
torch.randn(out_channel, in_channel, kernel_size, kernel_size)
|
102 |
+
)
|
103 |
+
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
|
104 |
+
|
105 |
+
self.stride = stride
|
106 |
+
self.padding = padding
|
107 |
+
|
108 |
+
if bias:
|
109 |
+
self.bias = nn.Parameter(torch.zeros(out_channel))
|
110 |
+
|
111 |
+
else:
|
112 |
+
self.bias = None
|
113 |
+
|
114 |
+
def forward(self, input):
|
115 |
+
out = conv2d_gradfix.conv2d(
|
116 |
+
input,
|
117 |
+
self.weight * self.scale,
|
118 |
+
bias=self.bias,
|
119 |
+
stride=self.stride,
|
120 |
+
padding=self.padding,
|
121 |
+
)
|
122 |
+
|
123 |
+
return out
|
124 |
+
|
125 |
+
def __repr__(self):
|
126 |
+
return (
|
127 |
+
f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},"
|
128 |
+
f" {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})"
|
129 |
+
)
|
130 |
+
|
131 |
+
|
132 |
+
class EqualLinear(nn.Module):
|
133 |
+
def __init__(
|
134 |
+
self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None
|
135 |
+
):
|
136 |
+
super().__init__()
|
137 |
+
|
138 |
+
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
|
139 |
+
|
140 |
+
if bias:
|
141 |
+
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
|
142 |
+
|
143 |
+
else:
|
144 |
+
self.bias = None
|
145 |
+
|
146 |
+
self.activation = activation
|
147 |
+
|
148 |
+
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
|
149 |
+
self.lr_mul = lr_mul
|
150 |
+
|
151 |
+
def forward(self, input):
|
152 |
+
if self.activation:
|
153 |
+
out = F.linear(input, self.weight * self.scale)
|
154 |
+
out = fused_leaky_relu(out, self.bias * self.lr_mul)
|
155 |
+
|
156 |
+
else:
|
157 |
+
out = F.linear(
|
158 |
+
input, self.weight * self.scale, bias=self.bias * self.lr_mul
|
159 |
+
)
|
160 |
+
|
161 |
+
return out
|
162 |
+
|
163 |
+
def __repr__(self):
|
164 |
+
return (
|
165 |
+
f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})"
|
166 |
+
)
|
167 |
+
|
168 |
+
|
169 |
+
class ModulatedConv2d(nn.Module):
|
170 |
+
def __init__(
|
171 |
+
self,
|
172 |
+
in_channel,
|
173 |
+
out_channel,
|
174 |
+
kernel_size,
|
175 |
+
style_dim,
|
176 |
+
demodulate=True,
|
177 |
+
upsample=False,
|
178 |
+
downsample=False,
|
179 |
+
blur_kernel=[1, 3, 3, 1],
|
180 |
+
fused=True,
|
181 |
+
):
|
182 |
+
super().__init__()
|
183 |
+
|
184 |
+
self.eps = 1e-8
|
185 |
+
self.kernel_size = kernel_size
|
186 |
+
self.in_channel = in_channel
|
187 |
+
self.out_channel = out_channel
|
188 |
+
self.upsample = upsample
|
189 |
+
self.downsample = downsample
|
190 |
+
|
191 |
+
if upsample:
|
192 |
+
factor = 2
|
193 |
+
p = (len(blur_kernel) - factor) - (kernel_size - 1)
|
194 |
+
pad0 = (p + 1) // 2 + factor - 1
|
195 |
+
pad1 = p // 2 + 1
|
196 |
+
|
197 |
+
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor)
|
198 |
+
|
199 |
+
if downsample:
|
200 |
+
factor = 2
|
201 |
+
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
202 |
+
pad0 = (p + 1) // 2
|
203 |
+
pad1 = p // 2
|
204 |
+
|
205 |
+
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
|
206 |
+
|
207 |
+
fan_in = in_channel * kernel_size ** 2
|
208 |
+
self.scale = 1 / math.sqrt(fan_in)
|
209 |
+
self.padding = kernel_size // 2
|
210 |
+
|
211 |
+
self.weight = nn.Parameter(
|
212 |
+
torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)
|
213 |
+
)
|
214 |
+
|
215 |
+
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
|
216 |
+
|
217 |
+
self.demodulate = demodulate
|
218 |
+
self.fused = fused
|
219 |
+
|
220 |
+
def __repr__(self):
|
221 |
+
return (
|
222 |
+
f"{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, "
|
223 |
+
f"upsample={self.upsample}, downsample={self.downsample})"
|
224 |
+
)
|
225 |
+
|
226 |
+
def forward(self, input, style, is_s_code=False):
|
227 |
+
batch, in_channel, height, width = input.shape
|
228 |
+
|
229 |
+
if not self.fused:
|
230 |
+
weight = self.scale * self.weight.squeeze(0)
|
231 |
+
|
232 |
+
if is_s_code:
|
233 |
+
style = style[self.modulation]
|
234 |
+
else:
|
235 |
+
style = self.modulation(style)
|
236 |
+
|
237 |
+
if self.demodulate:
|
238 |
+
w = weight.unsqueeze(0) * style.view(batch, 1, in_channel, 1, 1)
|
239 |
+
dcoefs = (w.square().sum((2, 3, 4)) + 1e-8).rsqrt()
|
240 |
+
|
241 |
+
input = input * style.reshape(batch, in_channel, 1, 1)
|
242 |
+
|
243 |
+
if self.upsample:
|
244 |
+
weight = weight.transpose(0, 1)
|
245 |
+
out = conv2d_gradfix.conv_transpose2d(
|
246 |
+
input, weight, padding=0, stride=2
|
247 |
+
)
|
248 |
+
out = self.blur(out)
|
249 |
+
|
250 |
+
elif self.downsample:
|
251 |
+
input = self.blur(input)
|
252 |
+
out = conv2d_gradfix.conv2d(input, weight, padding=0, stride=2)
|
253 |
+
|
254 |
+
else:
|
255 |
+
out = conv2d_gradfix.conv2d(input, weight, padding=self.padding)
|
256 |
+
|
257 |
+
if self.demodulate:
|
258 |
+
out = out * dcoefs.view(batch, -1, 1, 1)
|
259 |
+
|
260 |
+
return out
|
261 |
+
|
262 |
+
if is_s_code:
|
263 |
+
style = style[self.modulation]
|
264 |
+
else:
|
265 |
+
style = self.modulation(style)
|
266 |
+
|
267 |
+
style = style.view(batch, 1, in_channel, 1, 1)
|
268 |
+
weight = self.scale * self.weight * style
|
269 |
+
|
270 |
+
if self.demodulate:
|
271 |
+
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
|
272 |
+
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
|
273 |
+
|
274 |
+
weight = weight.view(
|
275 |
+
batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size
|
276 |
+
)
|
277 |
+
|
278 |
+
if self.upsample:
|
279 |
+
input = input.view(1, batch * in_channel, height, width)
|
280 |
+
weight = weight.view(
|
281 |
+
batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size
|
282 |
+
)
|
283 |
+
weight = weight.transpose(1, 2).reshape(
|
284 |
+
batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size
|
285 |
+
)
|
286 |
+
out = conv2d_gradfix.conv_transpose2d(
|
287 |
+
input, weight, padding=0, stride=2, groups=batch
|
288 |
+
)
|
289 |
+
_, _, height, width = out.shape
|
290 |
+
out = out.view(batch, self.out_channel, height, width)
|
291 |
+
out = self.blur(out)
|
292 |
+
|
293 |
+
elif self.downsample:
|
294 |
+
input = self.blur(input)
|
295 |
+
_, _, height, width = input.shape
|
296 |
+
input = input.view(1, batch * in_channel, height, width)
|
297 |
+
out = conv2d_gradfix.conv2d(
|
298 |
+
input, weight, padding=0, stride=2, groups=batch
|
299 |
+
)
|
300 |
+
_, _, height, width = out.shape
|
301 |
+
out = out.view(batch, self.out_channel, height, width)
|
302 |
+
|
303 |
+
else:
|
304 |
+
input = input.view(1, batch * in_channel, height, width)
|
305 |
+
out = conv2d_gradfix.conv2d(
|
306 |
+
input, weight, padding=self.padding, groups=batch
|
307 |
+
)
|
308 |
+
_, _, height, width = out.shape
|
309 |
+
out = out.view(batch, self.out_channel, height, width)
|
310 |
+
|
311 |
+
return out
|
312 |
+
|
313 |
+
|
314 |
+
class NoiseInjection(nn.Module):
|
315 |
+
def __init__(self):
|
316 |
+
super().__init__()
|
317 |
+
|
318 |
+
self.weight = nn.Parameter(torch.zeros(1))
|
319 |
+
|
320 |
+
def forward(self, image, noise=None):
|
321 |
+
if noise is None:
|
322 |
+
batch, _, height, width = image.shape
|
323 |
+
noise = image.new_empty(batch, 1, height, width).normal_()
|
324 |
+
|
325 |
+
return image + self.weight * noise
|
326 |
+
|
327 |
+
|
328 |
+
class ConstantInput(nn.Module):
|
329 |
+
def __init__(self, channel, size=4):
|
330 |
+
super().__init__()
|
331 |
+
|
332 |
+
self.input = nn.Parameter(torch.randn(1, channel, size, size))
|
333 |
+
|
334 |
+
def forward(self, input, is_s_code=False):
|
335 |
+
if not is_s_code:
|
336 |
+
batch = input.shape[0]
|
337 |
+
else:
|
338 |
+
batch = next(iter(input.values())).shape[0]
|
339 |
+
|
340 |
+
out = self.input.repeat(batch, 1, 1, 1)
|
341 |
+
|
342 |
+
return out
|
343 |
+
|
344 |
+
|
345 |
+
class StyledConv(nn.Module):
|
346 |
+
def __init__(
|
347 |
+
self,
|
348 |
+
in_channel,
|
349 |
+
out_channel,
|
350 |
+
kernel_size,
|
351 |
+
style_dim,
|
352 |
+
upsample=False,
|
353 |
+
blur_kernel=[1, 3, 3, 1],
|
354 |
+
demodulate=True,
|
355 |
+
):
|
356 |
+
super().__init__()
|
357 |
+
|
358 |
+
self.conv = ModulatedConv2d(
|
359 |
+
in_channel,
|
360 |
+
out_channel,
|
361 |
+
kernel_size,
|
362 |
+
style_dim,
|
363 |
+
upsample=upsample,
|
364 |
+
blur_kernel=blur_kernel,
|
365 |
+
demodulate=demodulate,
|
366 |
+
)
|
367 |
+
|
368 |
+
self.noise = NoiseInjection()
|
369 |
+
# self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1))
|
370 |
+
# self.activate = ScaledLeakyReLU(0.2)
|
371 |
+
self.activate = FusedLeakyReLU(out_channel)
|
372 |
+
|
373 |
+
def forward(self, input, style, noise=None, is_s_code=False):
|
374 |
+
out = self.conv(input, style, is_s_code=is_s_code)
|
375 |
+
out = self.noise(out, noise=noise)
|
376 |
+
# out = out + self.bias
|
377 |
+
out = self.activate(out)
|
378 |
+
|
379 |
+
return out
|
380 |
+
|
381 |
+
|
382 |
+
class ToRGB(nn.Module):
|
383 |
+
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
|
384 |
+
super().__init__()
|
385 |
+
|
386 |
+
if upsample:
|
387 |
+
self.upsample = Upsample(blur_kernel)
|
388 |
+
|
389 |
+
self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False)
|
390 |
+
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
|
391 |
+
|
392 |
+
def forward(self, input, style, skip=None, is_s_code=False):
|
393 |
+
out = self.conv(input, style, is_s_code=is_s_code)
|
394 |
+
out = out + self.bias
|
395 |
+
|
396 |
+
if skip is not None:
|
397 |
+
skip = self.upsample(skip)
|
398 |
+
|
399 |
+
out = out + skip
|
400 |
+
|
401 |
+
return out
|
402 |
+
|
403 |
+
|
404 |
+
class Generator(nn.Module):
|
405 |
+
def __init__(
|
406 |
+
self,
|
407 |
+
size,
|
408 |
+
style_dim,
|
409 |
+
n_mlp,
|
410 |
+
channel_multiplier=2,
|
411 |
+
blur_kernel=[1, 3, 3, 1],
|
412 |
+
lr_mlp=0.01,
|
413 |
+
):
|
414 |
+
super().__init__()
|
415 |
+
|
416 |
+
self.size = size
|
417 |
+
|
418 |
+
self.style_dim = style_dim
|
419 |
+
|
420 |
+
layers = [PixelNorm()]
|
421 |
+
|
422 |
+
for i in range(n_mlp):
|
423 |
+
layers.append(
|
424 |
+
EqualLinear(
|
425 |
+
style_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu"
|
426 |
+
)
|
427 |
+
)
|
428 |
+
|
429 |
+
self.style = nn.Sequential(*layers)
|
430 |
+
|
431 |
+
self.channels = {
|
432 |
+
4: 512,
|
433 |
+
8: 512,
|
434 |
+
16: 512,
|
435 |
+
32: 512,
|
436 |
+
64: 256 * channel_multiplier,
|
437 |
+
128: 128 * channel_multiplier,
|
438 |
+
256: 64 * channel_multiplier,
|
439 |
+
512: 32 * channel_multiplier,
|
440 |
+
1024: 16 * channel_multiplier,
|
441 |
+
}
|
442 |
+
|
443 |
+
self.input = ConstantInput(self.channels[4])
|
444 |
+
self.conv1 = StyledConv(
|
445 |
+
self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel
|
446 |
+
)
|
447 |
+
self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False)
|
448 |
+
|
449 |
+
self.log_size = int(math.log(size, 2))
|
450 |
+
self.num_layers = (self.log_size - 2) * 2 + 1
|
451 |
+
|
452 |
+
self.convs = nn.ModuleList()
|
453 |
+
self.upsamples = nn.ModuleList()
|
454 |
+
self.to_rgbs = nn.ModuleList()
|
455 |
+
self.noises = nn.Module()
|
456 |
+
|
457 |
+
in_channel = self.channels[4]
|
458 |
+
|
459 |
+
for layer_idx in range(self.num_layers):
|
460 |
+
res = (layer_idx + 5) // 2
|
461 |
+
shape = [1, 1, 2 ** res, 2 ** res]
|
462 |
+
self.noises.register_buffer(f"noise_{layer_idx}", torch.randn(*shape))
|
463 |
+
|
464 |
+
for i in range(3, self.log_size + 1):
|
465 |
+
out_channel = self.channels[2 ** i]
|
466 |
+
|
467 |
+
self.convs.append(
|
468 |
+
StyledConv(
|
469 |
+
in_channel,
|
470 |
+
out_channel,
|
471 |
+
3,
|
472 |
+
style_dim,
|
473 |
+
upsample=True,
|
474 |
+
blur_kernel=blur_kernel,
|
475 |
+
)
|
476 |
+
)
|
477 |
+
|
478 |
+
self.convs.append(
|
479 |
+
StyledConv(
|
480 |
+
out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel
|
481 |
+
)
|
482 |
+
)
|
483 |
+
|
484 |
+
self.to_rgbs.append(ToRGB(out_channel, style_dim))
|
485 |
+
|
486 |
+
in_channel = out_channel
|
487 |
+
|
488 |
+
self.n_latent = self.log_size * 2 - 2
|
489 |
+
|
490 |
+
|
491 |
+
self.modulation_layers = [self.conv1.conv.modulation, self.to_rgb1.conv.modulation] + \
|
492 |
+
[layer.conv.modulation for layer in self.convs] + \
|
493 |
+
[layer.conv.modulation for layer in self.to_rgbs]
|
494 |
+
|
495 |
+
def make_noise(self):
|
496 |
+
device = self.input.input.device
|
497 |
+
|
498 |
+
noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)]
|
499 |
+
|
500 |
+
for i in range(3, self.log_size + 1):
|
501 |
+
for _ in range(2):
|
502 |
+
noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device))
|
503 |
+
|
504 |
+
return noises
|
505 |
+
|
506 |
+
def mean_latent(self, n_latent):
|
507 |
+
latent_in = torch.randn(
|
508 |
+
n_latent, self.style_dim, device=self.input.input.device
|
509 |
+
)
|
510 |
+
latent = self.style(latent_in).mean(0, keepdim=True)
|
511 |
+
|
512 |
+
return latent
|
513 |
+
|
514 |
+
def get_latent(self, input):
|
515 |
+
return self.style(input)
|
516 |
+
|
517 |
+
def get_s_code(self, styles, input_is_latent):
|
518 |
+
|
519 |
+
if not input_is_latent:
|
520 |
+
styles = [self.style(s) for s in styles]
|
521 |
+
|
522 |
+
s_codes = [{layer: layer(s) for layer in self.modulation_layers} for s in styles] * len(styles)
|
523 |
+
|
524 |
+
return s_codes
|
525 |
+
|
526 |
+
def forward(
|
527 |
+
self,
|
528 |
+
styles,
|
529 |
+
return_latents=False,
|
530 |
+
inject_index=None,
|
531 |
+
truncation=1,
|
532 |
+
truncation_latent=None,
|
533 |
+
input_is_latent=False,
|
534 |
+
input_is_s_code=False,
|
535 |
+
noise=None,
|
536 |
+
randomize_noise=True,
|
537 |
+
):
|
538 |
+
if not input_is_s_code:
|
539 |
+
return self.forward_with_w(styles, return_latents, inject_index, truncation, truncation_latent, input_is_latent, noise, randomize_noise)
|
540 |
+
|
541 |
+
return self.forward_with_s(styles, return_latents, noise, randomize_noise)
|
542 |
+
|
543 |
+
def forward_with_w(
|
544 |
+
self,
|
545 |
+
styles,
|
546 |
+
return_latents=False,
|
547 |
+
inject_index=None,
|
548 |
+
truncation=1,
|
549 |
+
truncation_latent=None,
|
550 |
+
input_is_latent=False,
|
551 |
+
noise=None,
|
552 |
+
randomize_noise=True,
|
553 |
+
):
|
554 |
+
if not input_is_latent:
|
555 |
+
styles = [self.style(s) for s in styles]
|
556 |
+
|
557 |
+
if noise is None:
|
558 |
+
if randomize_noise:
|
559 |
+
noise = [None] * self.num_layers
|
560 |
+
else:
|
561 |
+
noise = [
|
562 |
+
getattr(self.noises, f"noise_{i}") for i in range(self.num_layers)
|
563 |
+
]
|
564 |
+
|
565 |
+
if truncation < 1:
|
566 |
+
style_t = []
|
567 |
+
|
568 |
+
for style in styles:
|
569 |
+
style_t.append(
|
570 |
+
truncation_latent + truncation * (style - truncation_latent)
|
571 |
+
)
|
572 |
+
|
573 |
+
styles = style_t
|
574 |
+
|
575 |
+
if len(styles) < 2:
|
576 |
+
inject_index = self.n_latent
|
577 |
+
|
578 |
+
if styles[0].ndim < 3:
|
579 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
580 |
+
|
581 |
+
else:
|
582 |
+
latent = styles[0]
|
583 |
+
|
584 |
+
else:
|
585 |
+
if inject_index is None:
|
586 |
+
inject_index = random.randint(1, self.n_latent - 1)
|
587 |
+
|
588 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
589 |
+
latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1)
|
590 |
+
|
591 |
+
latent = torch.cat([latent, latent2], 1)
|
592 |
+
|
593 |
+
out = self.input(latent)
|
594 |
+
out = self.conv1(out, latent[:, 0], noise=noise[0])
|
595 |
+
|
596 |
+
skip = self.to_rgb1(out, latent[:, 1])
|
597 |
+
|
598 |
+
i = 1
|
599 |
+
for conv1, conv2, noise1, noise2, to_rgb in zip(
|
600 |
+
self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
|
601 |
+
):
|
602 |
+
out = conv1(out, latent[:, i], noise=noise1)
|
603 |
+
out = conv2(out, latent[:, i + 1], noise=noise2)
|
604 |
+
skip = to_rgb(out, latent[:, i + 2], skip)
|
605 |
+
|
606 |
+
i += 2
|
607 |
+
|
608 |
+
image = skip
|
609 |
+
|
610 |
+
if return_latents:
|
611 |
+
return image, latent
|
612 |
+
|
613 |
+
else:
|
614 |
+
return image, None
|
615 |
+
|
616 |
+
def forward_with_s(
|
617 |
+
self,
|
618 |
+
styles,
|
619 |
+
return_latents=False,
|
620 |
+
noise=None,
|
621 |
+
randomize_noise=True,
|
622 |
+
):
|
623 |
+
|
624 |
+
if noise is None:
|
625 |
+
if randomize_noise:
|
626 |
+
noise = [None] * self.num_layers
|
627 |
+
else:
|
628 |
+
noise = [
|
629 |
+
getattr(self.noises, f"noise_{i}") for i in range(self.num_layers)
|
630 |
+
]
|
631 |
+
|
632 |
+
out = self.input(styles, is_s_code=True)
|
633 |
+
out = self.conv1(out, styles, is_s_code=True, noise=noise[0])
|
634 |
+
|
635 |
+
skip = self.to_rgb1(out, styles, is_s_code=True)
|
636 |
+
|
637 |
+
i = 1
|
638 |
+
for conv1, conv2, noise1, noise2, to_rgb in zip(
|
639 |
+
self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
|
640 |
+
):
|
641 |
+
out = conv1(out, styles, is_s_code=True, noise=noise1)
|
642 |
+
out = conv2(out, styles, is_s_code=True, noise=noise2)
|
643 |
+
skip = to_rgb(out, styles, skip, is_s_code=True)
|
644 |
+
|
645 |
+
i += 2
|
646 |
+
|
647 |
+
image = skip
|
648 |
+
|
649 |
+
if return_latents:
|
650 |
+
return image, styles
|
651 |
+
|
652 |
+
else:
|
653 |
+
return image, None
|
654 |
+
|
655 |
+
class ConvLayer(nn.Sequential):
|
656 |
+
def __init__(
|
657 |
+
self,
|
658 |
+
in_channel,
|
659 |
+
out_channel,
|
660 |
+
kernel_size,
|
661 |
+
downsample=False,
|
662 |
+
blur_kernel=[1, 3, 3, 1],
|
663 |
+
bias=True,
|
664 |
+
activate=True,
|
665 |
+
):
|
666 |
+
layers = []
|
667 |
+
|
668 |
+
if downsample:
|
669 |
+
factor = 2
|
670 |
+
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
671 |
+
pad0 = (p + 1) // 2
|
672 |
+
pad1 = p // 2
|
673 |
+
|
674 |
+
layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
|
675 |
+
|
676 |
+
stride = 2
|
677 |
+
self.padding = 0
|
678 |
+
|
679 |
+
else:
|
680 |
+
stride = 1
|
681 |
+
self.padding = kernel_size // 2
|
682 |
+
|
683 |
+
layers.append(
|
684 |
+
EqualConv2d(
|
685 |
+
in_channel,
|
686 |
+
out_channel,
|
687 |
+
kernel_size,
|
688 |
+
padding=self.padding,
|
689 |
+
stride=stride,
|
690 |
+
bias=bias and not activate,
|
691 |
+
)
|
692 |
+
)
|
693 |
+
|
694 |
+
if activate:
|
695 |
+
layers.append(FusedLeakyReLU(out_channel, bias=bias))
|
696 |
+
|
697 |
+
super().__init__(*layers)
|
698 |
+
|
699 |
+
|
700 |
+
class ResBlock(nn.Module):
|
701 |
+
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
|
702 |
+
super().__init__()
|
703 |
+
|
704 |
+
self.conv1 = ConvLayer(in_channel, in_channel, 3)
|
705 |
+
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)
|
706 |
+
|
707 |
+
self.skip = ConvLayer(
|
708 |
+
in_channel, out_channel, 1, downsample=True, activate=False, bias=False
|
709 |
+
)
|
710 |
+
|
711 |
+
def forward(self, input):
|
712 |
+
out = self.conv1(input)
|
713 |
+
out = self.conv2(out)
|
714 |
+
|
715 |
+
skip = self.skip(input)
|
716 |
+
out = (out + skip) / math.sqrt(2)
|
717 |
+
|
718 |
+
return out
|
719 |
+
|
720 |
+
|
721 |
+
class Discriminator(nn.Module):
|
722 |
+
def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]):
|
723 |
+
super().__init__()
|
724 |
+
|
725 |
+
channels = {
|
726 |
+
4: 512,
|
727 |
+
8: 512,
|
728 |
+
16: 512,
|
729 |
+
32: 512,
|
730 |
+
64: 256 * channel_multiplier,
|
731 |
+
128: 128 * channel_multiplier,
|
732 |
+
256: 64 * channel_multiplier,
|
733 |
+
512: 32 * channel_multiplier,
|
734 |
+
1024: 16 * channel_multiplier,
|
735 |
+
}
|
736 |
+
|
737 |
+
convs = [ConvLayer(3, channels[size], 1)]
|
738 |
+
|
739 |
+
log_size = int(math.log(size, 2))
|
740 |
+
|
741 |
+
in_channel = channels[size]
|
742 |
+
|
743 |
+
for i in range(log_size, 2, -1):
|
744 |
+
out_channel = channels[2 ** (i - 1)]
|
745 |
+
|
746 |
+
convs.append(ResBlock(in_channel, out_channel, blur_kernel))
|
747 |
+
|
748 |
+
in_channel = out_channel
|
749 |
+
|
750 |
+
self.convs = nn.Sequential(*convs)
|
751 |
+
|
752 |
+
self.stddev_group = 4
|
753 |
+
self.stddev_feat = 1
|
754 |
+
|
755 |
+
self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
|
756 |
+
self.final_linear = nn.Sequential(
|
757 |
+
EqualLinear(channels[4] * 4 * 4, channels[4], activation="fused_lrelu"),
|
758 |
+
EqualLinear(channels[4], 1),
|
759 |
+
)
|
760 |
+
|
761 |
+
def forward(self, input):
|
762 |
+
out = self.convs(input)
|
763 |
+
|
764 |
+
batch, channel, height, width = out.shape
|
765 |
+
group = min(batch, self.stddev_group)
|
766 |
+
stddev = out.view(
|
767 |
+
group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
|
768 |
+
)
|
769 |
+
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
|
770 |
+
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
|
771 |
+
stddev = stddev.repeat(group, 1, height, width)
|
772 |
+
out = torch.cat([out, stddev], 1)
|
773 |
+
|
774 |
+
out = self.final_conv(out)
|
775 |
+
|
776 |
+
out = out.view(batch, -1)
|
777 |
+
out = self.final_linear(out)
|
778 |
+
|
779 |
+
return out
|
780 |
+
|