Spaces:
Runtime error
Runtime error
Cuda uses now check for device
Browse files- app.py +1 -2
- generate_videos.py +4 -2
app.py
CHANGED
@@ -92,7 +92,6 @@ class ImageEditor(object):
|
|
92 |
|
93 |
self.e4e_net = pSp(opts, self.device)
|
94 |
self.e4e_net.eval()
|
95 |
-
self.e4e_net.cuda()
|
96 |
|
97 |
self.shape_predictor = dlib.shape_predictor(
|
98 |
model_paths["dlib"]
|
@@ -192,7 +191,7 @@ class ImageEditor(object):
|
|
192 |
|
193 |
def run_on_batch(self, inputs):
|
194 |
images, latents = self.e4e_net(
|
195 |
-
inputs.to(
|
196 |
)
|
197 |
return images, latents
|
198 |
|
|
|
92 |
|
93 |
self.e4e_net = pSp(opts, self.device)
|
94 |
self.e4e_net.eval()
|
|
|
95 |
|
96 |
self.shape_predictor = dlib.shape_predictor(
|
97 |
model_paths["dlib"]
|
|
|
191 |
|
192 |
def run_on_batch(self, inputs):
|
193 |
images, latents = self.e4e_net(
|
194 |
+
inputs.to(self.device).float(), randomize_noise=False, return_latents=True
|
195 |
)
|
196 |
return images, latents
|
197 |
|
generate_videos.py
CHANGED
@@ -52,6 +52,8 @@ def project_code(latent_code, boundary, distance=3.0):
|
|
52 |
|
53 |
def generate_frames(args, source_latent, g_ema_list, output_dir):
|
54 |
|
|
|
|
|
55 |
alphas = np.linspace(0, 1, num=20)
|
56 |
|
57 |
interpolate_func = interpolate_with_boundaries # default
|
@@ -84,7 +86,7 @@ def generate_frames(args, source_latent, g_ema_list, output_dir):
|
|
84 |
src_pars[k].data.copy_(mix_pars[segment_id][k] * (1 - mix_alpha) + mix_pars[segment_id + 1][k] * mix_alpha)
|
85 |
|
86 |
if idx == 0 or segments or latent is not latents[idx - 1]:
|
87 |
-
w = torch.from_numpy(latent).float().
|
88 |
|
89 |
with torch.no_grad():
|
90 |
img, _ = g_ema([w], input_is_latent=True, truncation=1, randomize_noise=False)
|
@@ -205,7 +207,7 @@ def vid_to_gif(vid_path, output_dir, scale=256, fps=35):
|
|
205 |
|
206 |
|
207 |
if __name__ == '__main__':
|
208 |
-
device =
|
209 |
|
210 |
parser = argparse.ArgumentParser()
|
211 |
|
|
|
52 |
|
53 |
def generate_frames(args, source_latent, g_ema_list, output_dir):
|
54 |
|
55 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
56 |
+
|
57 |
alphas = np.linspace(0, 1, num=20)
|
58 |
|
59 |
interpolate_func = interpolate_with_boundaries # default
|
|
|
86 |
src_pars[k].data.copy_(mix_pars[segment_id][k] * (1 - mix_alpha) + mix_pars[segment_id + 1][k] * mix_alpha)
|
87 |
|
88 |
if idx == 0 or segments or latent is not latents[idx - 1]:
|
89 |
+
w = torch.from_numpy(latent).float().to(device)
|
90 |
|
91 |
with torch.no_grad():
|
92 |
img, _ = g_ema([w], input_is_latent=True, truncation=1, randomize_noise=False)
|
|
|
207 |
|
208 |
|
209 |
if __name__ == '__main__':
|
210 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
211 |
|
212 |
parser = argparse.ArgumentParser()
|
213 |
|