import os import random import torch import gradio as gr from e4e.models.psp import pSp from util import * from huggingface_hub import hf_hub_download import tempfile from argparse import Namespace import shutil import dlib import numpy as np import torchvision.transforms as transforms from torchvision import utils from model.sg2_model import Generator from generate_videos import generate_frames, video_from_interpolations, project_code_by_edit_name from styleclip.styleclip_global import project_code_with_styleclip, style_tensor_to_style_dict import clip model_dir = "models" os.makedirs(model_dir, exist_ok=True) model_repos = {"e4e": ("akhaliq/JoJoGAN_e4e_ffhq_encode", "e4e_ffhq_encode.pt"), "dlib": ("akhaliq/jojogan_dlib", "shape_predictor_68_face_landmarks.dat"), "sc_fs3": ("rinong/stylegan-nada-models", "fs3.npy"), "base": ("akhaliq/jojogan-stylegan2-ffhq-config-f", "stylegan2-ffhq-config-f.pt"), "anime": ("rinong/stylegan-nada-models", "anime.pt"), "joker": ("rinong/stylegan-nada-models", "joker.pt"), # "simpson": ("rinong/stylegan-nada-models", "simpson.pt"), # "ssj": ("rinong/stylegan-nada-models", "ssj.pt"), # "white_walker": ("rinong/stylegan-nada-models", "white_walker.pt"), # "zuckerberg": ("rinong/stylegan-nada-models", "zuckerberg.pt"), # "cubism": ("rinong/stylegan-nada-models", "cubism.pt"), # "disney_princess": ("rinong/stylegan-nada-models", "disney_princess.pt"), # "edvard_munch": ("rinong/stylegan-nada-models", "edvard_munch.pt"), # "van_gogh": ("rinong/stylegan-nada-models", "van_gogh.pt"), # "oil": ("rinong/stylegan-nada-models", "oil.pt"), # "rick_morty": ("rinong/stylegan-nada-models", "rick_morty.pt"), # "botero": ("rinong/stylegan-nada-models", "botero.pt"), # "crochet": ("rinong/stylegan-nada-models", "crochet.pt"), # "modigliani": ("rinong/stylegan-nada-models", "modigliani.pt"), # "shrek": ("rinong/stylegan-nada-models", "shrek.pt"), # "sketch": ("rinong/stylegan-nada-models", "sketch.pt"), # "thanos": ("rinong/stylegan-nada-models", "thanos.pt"), } def get_models(): os.makedirs(model_dir, exist_ok=True) model_paths = {} for model_name, repo_details in model_repos.items(): download_path = hf_hub_download(repo_id=repo_details[0], filename=repo_details[1]) model_paths[model_name] = download_path return model_paths model_paths = get_models() class ImageEditor(object): def __init__(self): self.device = "cuda" if torch.cuda.is_available() else "cpu" latent_size = 512 n_mlp = 8 channel_mult = 2 model_size = 1024 self.generators = {} self.model_list = [name for name in model_paths.keys() if name not in ["e4e", "dlib", "sc_fs3"]] for model in self.model_list: g_ema = Generator( model_size, latent_size, n_mlp, channel_multiplier=channel_mult ).to(self.device) checkpoint = torch.load(model_paths[model], map_location=self.device) g_ema.load_state_dict(checkpoint['g_ema']) self.generators[model] = g_ema self.experiment_args = {"model_path": model_paths["e4e"]} self.experiment_args["transform"] = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), ] ) self.resize_dims = (256, 256) model_path = self.experiment_args["model_path"] ckpt = torch.load(model_path, map_location="cpu") opts = ckpt["opts"] opts["checkpoint_path"] = model_path opts = Namespace(**opts) self.e4e_net = pSp(opts, self.device) self.e4e_net.eval() self.shape_predictor = dlib.shape_predictor( model_paths["dlib"] ) self.styleclip_fs3 = torch.from_numpy(np.load(model_paths["sc_fs3"])).to(self.device) self.clip_model, _ = clip.load("ViT-B/32", device=self.device) print("setup complete") def get_style_list(self): style_list = [] for key in self.generators: style_list.append(key) return style_list def invert_image(self, input_image): input_image = self.run_alignment(str(input_image)) input_image = input_image.resize(self.resize_dims) img_transforms = self.experiment_args["transform"] transformed_image = img_transforms(input_image) with torch.no_grad(): images, latents = self.run_on_batch(transformed_image.unsqueeze(0)) result_image, latent = images[0], latents[0] inverted_latent = latent.unsqueeze(0).unsqueeze(1) return inverted_latent def get_generators_for_styles(self, output_styles, loop_styles=False): if "base" in output_styles: # always start with base if chosen output_styles.insert(0, output_styles.pop(output_styles.index("base"))) if loop_styles: output_styles.append(output_styles[0]) return [self.generators[style] for style in output_styles] def _pack_edits(func): def inner(self, edit_type_choice, pose_slider, smile_slider, gender_slider, age_slider, hair_slider, src_text_styleclip, tar_text_styleclip, alpha_styleclip, beta_styleclip, *args): edit_choices = {"edit_type": edit_type_choice, "pose": pose_slider, "smile": smile_slider, "gender": gender_slider, "age": age_slider, "hair_length": hair_slider, "src_text": src_text_styleclip, "tar_text": tar_text_styleclip, "alpha": alpha_styleclip, "beta": beta_styleclip} return func(self, *args, edit_choices) return inner def get_target_latents(self, source_latent, edit_choices, generators): target_latents = [] if edit_choices["edit_type"] == "InterFaceGAN": np_source_latent = source_latent.squeeze(0).cpu().detach().numpy() for attribute_name in ["pose", "smile", "gender", "age", "hair_length"]: strength = edit_choices[attribute_name] if strength != 0.0: projected_code_np = project_code_by_edit_name(np_source_latent, attribute_name, strength) target_latents.append(torch.from_numpy(projected_code_np).float().to(self.device)) elif edit_choices["edit_type"] == "StyleCLIP": if edit_choices["alpha"] != 0.0: source_s_dict = generators[0].get_s_code(source_latent, input_is_latent=True)[0] target_latents.append(project_code_with_styleclip(source_s_dict, edit_choices["src_text"], edit_choices["tar_text"], edit_choices["alpha"], edit_choices["beta"], generators[0], self.styleclip_fs3, self.clip_model)) # if edit type is none or if all sliders were set to 0 if not target_latents: target_latents = [source_latent, ] * max((len(generators) - 1), 1) return target_latents @_pack_edits def edit_image(self, input, output_styles, edit_choices): return self.predict(input, output_styles, edit_choices=edit_choices) @_pack_edits def edit_video(self, input, output_styles, loop_styles, edit_choices): return self.predict(input, output_styles, generate_video=True, loop_styles=loop_styles, edit_choices=edit_choices) def predict( self, input, # Input image path output_styles, # Style checkbox options. generate_video = False, # Generate a video instead of an output image loop_styles = False, # Loop back to the initial style edit_choices = None, # Optional dictionary with edit choice arguments ): if edit_choices is None: edit_choices = {"edit_type": "None"} # @title Align image out_dir = tempfile.mkdtemp() inverted_latent = self.invert_image(input) generators = self.get_generators_for_styles(output_styles, loop_styles) target_latents = self.get_target_latents(inverted_latent, edit_choices, generators) if not generate_video: output_paths = [] with torch.no_grad(): for g_ema in generators: latent_for_gen = random.choice(target_latents) if edit_choices["edit_type"] == "StyleCLIP": latent_for_gen = style_tensor_to_style_dict(latent_for_gen, g_ema) img, _ = g_ema(latent_for_gen, input_is_s_code=True, input_is_latent=True, truncation=1, randomize_noise=False) else: img, _ = g_ema([latent_for_gen], input_is_latent=True, truncation=1, randomize_noise=False) output_path = os.path.join(out_dir, f"out_{len(output_paths)}.jpg") utils.save_image(img, output_path, nrow=1, normalize=True, range=(-1, 1)) output_paths.append(output_path) return output_paths return self.generate_vid(generators, inverted_latent, target_latents, out_dir) def generate_vid(self, generators, source_latent, target_latents, out_dir): fps = 24 with tempfile.TemporaryDirectory() as dirpath: generate_frames(source_latent, target_latents, generators, dirpath) video_from_interpolations(fps, dirpath) gen_path = os.path.join(dirpath, "out.mp4") out_path = os.path.join(out_dir, "out.mp4") shutil.copy2(gen_path, out_path) return out_path def run_alignment(self, image_path): aligned_image = align_face(filepath=image_path, predictor=self.shape_predictor) print("Aligned image has shape: {}".format(aligned_image.size)) return aligned_image def run_on_batch(self, inputs): images, latents = self.e4e_net( inputs.to(self.device).float(), randomize_noise=False, return_latents=True ) return images, latents editor = ImageEditor() # def change_component_visibility(component_types, invert_choices): # def visibility_impl(visible): # return [component_types[idx].update(visible=visible ^ invert_choices[idx]) for idx in range(len(component_types))] # return visibility_impl # def group_visibility(visible): # print("visible: ", visible) # return gr.Group.update(visibile=visible) blocks = gr.Blocks() with blocks: gr.Markdown("
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators | Project Page | Code