Spaces:
Runtime error
Runtime error
rishabhv471
commited on
Commit
β’
36ab27c
1
Parent(s):
5e87164
app.py
Browse files
app.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from sahi.prediction import ObjectPrediction
|
4 |
+
from sahi.utils.cv import visualize_object_predictions, read_image
|
5 |
+
from ultralyticsplus import YOLO, render_result
|
6 |
+
|
7 |
+
# Images
|
8 |
+
torch.hub.download_url_to_file('https://huggingface.co/spaces/foduucom/table-extraction-yolov8/resolve/main/test/table1.jpg', 'document1.jpg')
|
9 |
+
torch.hub.download_url_to_file('https://huggingface.co/spaces/foduucom/table-extraction-yolov8/resolve/main/test/table2.jpg', 'document2.jpg')
|
10 |
+
torch.hub.download_url_to_file('https://huggingface.co/spaces/foduucom/table-extraction-yolov8/resolve/main/test/table3.jpg', 'document3.jpg')
|
11 |
+
|
12 |
+
def yolov8_inference(
|
13 |
+
image: gr.inputs.Image = None,
|
14 |
+
model_path: gr.inputs.Dropdown = None,
|
15 |
+
image_size: gr.inputs.Slider = 640,
|
16 |
+
conf_threshold: gr.inputs.Slider = 0.25,
|
17 |
+
iou_threshold: gr.inputs.Slider = 0.45,
|
18 |
+
):
|
19 |
+
"""
|
20 |
+
YOLOv8 inference function
|
21 |
+
Args:
|
22 |
+
image: Input image
|
23 |
+
model_path: Path to the model
|
24 |
+
image_size: Image size
|
25 |
+
conf_threshold: Confidence threshold
|
26 |
+
iou_threshold: IOU threshold
|
27 |
+
Returns:
|
28 |
+
Rendered image
|
29 |
+
"""
|
30 |
+
model = YOLO(model_path)
|
31 |
+
model.overrides['conf'] = conf_threshold
|
32 |
+
model.overrides['iou']= iou_threshold
|
33 |
+
model.overrides['agnostic_nms'] = False # NMS class-agnostic
|
34 |
+
model.overrides['max_det'] = 1000
|
35 |
+
image = read_image(image)
|
36 |
+
results = model.predict(image)
|
37 |
+
render = render_result(model=model, image=image, result=results[0])
|
38 |
+
|
39 |
+
return render
|
40 |
+
|
41 |
+
|
42 |
+
inputs = [
|
43 |
+
gr.inputs.Image(type="filepath", label="Input Image"),
|
44 |
+
gr.inputs.Dropdown(["foduucom/table-detection-and-extraction"],
|
45 |
+
default="foduucom/table-detection-and-extraction", label="Model"),
|
46 |
+
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
47 |
+
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
|
48 |
+
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
|
49 |
+
]
|
50 |
+
|
51 |
+
outputs = gr.outputs.Image(type="filepath", label="Output Image")
|
52 |
+
title = "YoloTableExtract: Efficient Table Detection"
|
53 |
+
|
54 |
+
description = "π YoloTableExtract is a powerful space that utilizes YOLOv8s for accurate table detection and extraction. Whether tables are bordered or borderless, this space can effectively identify and extract them from images. For further assistance and support related to documentation or data-related issues, feel free to contact [email protected]. If you find this space helpful, please show your appreciation by liking it. β€οΈππΌ"
|
55 |
+
examples = [['document1.jpg', 'foduucom/table-detection-and-extraction', 640, 0.25, 0.45], ['document2.jpg', 'foduucom/table-detection-and-extraction', 640, 0.25, 0.45], ['document3.jpg', 'foduucom/table-detection-and-extraction', 1280, 0.25, 0.45]]
|
56 |
+
demo_app = gr.Interface(
|
57 |
+
fn=yolov8_inference,
|
58 |
+
inputs=inputs,
|
59 |
+
outputs=outputs,
|
60 |
+
title=title,
|
61 |
+
description=description,
|
62 |
+
examples=examples,
|
63 |
+
cache_examples=True,
|
64 |
+
theme='huggingface',
|
65 |
+
)
|
66 |
+
demo_app.launch(debug=True, enable_queue=True)
|