|
import gradio as gr |
|
import spaces |
|
import random |
|
import torch |
|
from huggingface_hub import snapshot_download |
|
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_inpainting import StableDiffusionXLInpaintPipeline |
|
from kolors.models.modeling_chatglm import ChatGLMModel |
|
from kolors.models.tokenization_chatglm import ChatGLMTokenizer |
|
from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel |
|
from groundingdino.util.inference import load_model, predict |
|
from segment_anything import SamAutomaticMaskGenerator |
|
from PIL import Image |
|
import numpy as np |
|
import os |
|
|
|
|
|
device = "cuda" |
|
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-Inpainting") |
|
|
|
|
|
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder',torch_dtype=torch.float16).half().to(device) |
|
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') |
|
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device) |
|
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") |
|
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device) |
|
|
|
pipe = StableDiffusionXLInpaintPipeline( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler |
|
) |
|
|
|
pipe.to(device) |
|
pipe.enable_attention_slicing() |
|
|
|
|
|
model_dino = load_model("path/to/groundingdino/config.yaml", "path/to/groundingdino/model.pth") |
|
sam = SamAutomaticMaskGenerator(model_type="vit_h", checkpoint="model/sam_vit_h_4b8939.pth") |
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
def generate_mask(image: Image): |
|
boxes, logits, phrases = predict(model_dino, image, "prompt") |
|
masks = sam.generate(image) |
|
mask = masks[0]["segmentation"] |
|
return Image.fromarray(mask) |
|
|
|
@spaces.GPU |
|
def infer(prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
|
|
mask_image = generate_mask(image) |
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
result = pipe( |
|
prompt=prompt, |
|
image=image, |
|
mask_image=mask_image, |
|
height=image.height, |
|
width=image.width, |
|
guidance_scale=guidance_scale, |
|
generator=generator, |
|
num_inference_steps=num_inference_steps, |
|
negative_prompt=negative_prompt, |
|
num_images_per_prompt=1, |
|
strength=0.999 |
|
).images[0] |
|
|
|
return result |
|
|
|
css=""" |
|
#col-left { |
|
margin: 0 auto; |
|
max-width: 600px; |
|
} |
|
#col-right { |
|
margin: 0 auto; |
|
max-width: 700px; |
|
} |
|
""" |
|
|
|
def load_description(fp): |
|
with open(fp, 'r', encoding='utf-8') as f: |
|
content = f.read() |
|
return content |
|
|
|
with gr.Blocks(css=css) as Kolors: |
|
gr.HTML(load_description("assets/title.md")) |
|
|
|
with gr.Row(): |
|
with gr.Column(elem_id="col-left"): |
|
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt", lines=2) |
|
image = gr.ImageEditor(label="Image", type="pil", image_mode='RGB') |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
negative_prompt = gr.Textbox(label="Negative prompt", value="low quality, bad anatomy") |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=6.0) |
|
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=10, maximum=50, step=1, value=25) |
|
|
|
run_button = gr.Button("Run") |
|
|
|
with gr.Column(elem_id="col-right"): |
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
run_button.click( |
|
fn=infer, |
|
inputs=[prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps], |
|
outputs=[result] |
|
) |
|
|
|
Kolors.queue().launch(debug=True) |
|
|