rishi1985's picture
Duplicate from prlabs2023/text-embeding-2-a
3709632
raw
history blame
2.4 kB
# import firebase_admin
# from firebase_admin import credentials
# from firebase_admin import firestore
import io
from fastapi import FastAPI, File, UploadFile
from werkzeug.utils import secure_filename
# import speech_recognition as sr
import subprocess
import os
import requests
import random
import pandas as pd
from pydub import AudioSegment
from datetime import datetime
from datetime import date
import numpy as np
# from sklearn.ensemble import RandomForestRegressor
import shutil
import json
# from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
from pydantic import BaseModel
from typing import Annotated
# from transformers import BertTokenizerFast, EncoderDecoderModel
import torch
import re
# from transformers import AutoTokenizer, T5ForConditionalGeneration
from fastapi import Form
# from transformers import AutoModelForSequenceClassification
# from transformers import TFAutoModelForSequenceClassification
# from transformers import AutoTokenizer, AutoConfig
import numpy as np
# from scipy.special import softmax
from sentence_transformers import SentenceTransformer
# model = SentenceTransformer('flax-sentence-embeddings/all_datasets_v4_MiniLM-L6')
model = SentenceTransformer("sentence-transformers/all-roberta-large-v1")
class Query(BaseModel):
text: str
from fastapi import FastAPI, Request, Depends, UploadFile, File
from fastapi.exceptions import HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
# now = datetime.now()
# UPLOAD_FOLDER = '/files'
# ALLOWED_EXTENSIONS = {'txt', 'pdf', 'png',
# 'jpg', 'jpeg', 'gif', 'ogg', 'mp3', 'wav'}
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=['*'],
allow_credentials=True,
allow_methods=['*'],
allow_headers=['*'],
)
# cred = credentials.Certificate('key.json')
# app1 = firebase_admin.initialize_app(cred)
# db = firestore.client()
# data_frame = pd.read_csv('data.csv')
@app.on_event("startup")
async def startup_event():
print("on startup")
@app.post("/")
async def get_answer(q: Query ):
text = q.text
text_e = model.encode(text)
dict={ }
c=0
text_e= text_e.tolist()
for num in text_e:
dict[c]= num
c= c+1
return dict
return "hello"