MarketCompass / srp.py
riteshcp's picture
Upload srp.py
f282ab6 verified
raw
history blame
5.58 kB
import streamlit as st
import yfinance as yf
import pandas as pd
from datetime import datetime, timedelta, time
# Load ticker symbols from the CSV file
@st.cache_data # Updated from st.cache to remove deprecation warning
def load_ticker_list(file_path):
try:
stock_df = pd.read_csv(file_path)
return stock_df['Symbol'].tolist()
except Exception as e:
st.error(f"Error loading ticker list: {str(e)}")
return []
# Function to check if the market is open
def is_market_open():
now = datetime.now().time()
market_open_time = time(9, 15) # NSE opens at 9:15 AM
market_close_time = time(15, 30) # NSE closes at 3:30 PM
return market_open_time <= now <= market_close_time
# Function to calculate pivot point and support/resistance levels
def calculate_pivot_levels(stock_data):
try:
# Fixed the float() deprecation warnings by using .iloc[0]
high = stock_data['High'].iloc[-1]
low = stock_data['Low'].iloc[-1]
close = stock_data['Close'].iloc[-1]
# Calculate pivot point
pivot = (high + low + close) / 3
# Calculate support and resistance levels
resistance1 = (2 * pivot) - low
support1 = (2 * pivot) - high
resistance2 = pivot + (high - low)
support2 = pivot - (high - low)
resistance3 = high + 2 * (pivot - low)
support3 = low - 2 * (high - pivot)
levels = {
'Pivot Point': pivot,
'Resistance 1': resistance1,
'Support 1': support1,
'Resistance 2': resistance2,
'Support 2': support2,
'Resistance 3': resistance3,
'Support 3': support3
}
return levels
except Exception as e:
st.error(f"Error calculating pivot levels: {str(e)}")
return None
# Function to fetch stock data with proper error handling
@st.cache_data(ttl=300) # Cache for 5 minutes
def get_stock_data(symbol):
try:
# Add .NS suffix for NSE stocks
nse_symbol = f"{symbol}.NS"
# Try to get today's data
today = datetime.today().date()
stock = yf.download(
nse_symbol,
start=today - timedelta(days=5), # Get more days of data
end=today + timedelta(days=1),
interval='1d',
progress=False # Disable progress bar
)
if not stock.empty:
return stock.tail(1) # Return only the latest day's data
else:
st.warning("No data available for the selected stock.")
return pd.DataFrame()
except Exception as e:
st.error(f"Error fetching data for {symbol}: {str(e)}")
return pd.DataFrame()
# Streamlit UI
def main():
st.title("Support and Resistance Level Calculator for NIFTY 500 Stocks")
# Load ticker symbols
file_path = "G:/RSI/ind_nifty500list (1) (1).csv"
ticker_list = load_ticker_list(file_path)
if not ticker_list:
st.error("Failed to load ticker list. Please check the file path.")
return
# Select a ticker from the list
symbol = st.selectbox("Select a Stock Symbol", ticker_list)
# Check market status
if is_market_open():
st.warning("Market is currently open. Data might not be finalized until after 3:30 PM.")
if symbol:
# Add a refresh button
col1, col2 = st.columns([1, 4])
with col1:
refresh = st.button("🔄 Refresh")
# Display loading spinner
with st.spinner('Fetching stock data...'):
if refresh:
# Clear cache for this stock
get_stock_data.clear()
stock_data = get_stock_data(symbol)
if not stock_data.empty:
# Calculate and display levels
levels = calculate_pivot_levels(stock_data)
if levels:
# Fixed: Get current price as a scalar value
current_price = float(stock_data['Close'].iloc[-1])
st.metric("Current Price", f"₹{current_price:.2f}")
# Create three columns for better organization
st.subheader(f"Support and Resistance Levels for {symbol}")
col1, col2, col3 = st.columns(3)
# Display resistance levels
with col1:
st.write("### Resistance Levels")
for i in range(3, 0, -1):
value = float(levels[f'Resistance {i}']) # Convert to float
st.write(f"R{i}: ₹{value:.2f}")
# Display pivot point
with col2:
st.write("### Pivot Point")
value = float(levels['Pivot Point']) # Convert to float
st.write(f"PP: ₹{value:.2f}")
# Display support levels
with col3:
st.write("### Support Levels")
for i in range(1, 4):
value = float(levels[f'Support {i}']) # Convert to float
st.write(f"S{i}: ₹{value:.2f}")
else:
st.error("Failed to fetch stock data. Please try again later.")
if __name__ == "__main__":
main()