Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -25,10 +25,10 @@ vilt_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetun
|
|
25 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
26 |
|
27 |
git_model_base.to(device)
|
28 |
-
blip_model_base.to(device)
|
29 |
#git_model_large.to(device)
|
30 |
#blip_model_large.to(device)
|
31 |
-
vilt_model.to(device)
|
32 |
|
33 |
def generate_answer_git(processor, model, image, question):
|
34 |
# prepare image
|
@@ -42,10 +42,16 @@ def generate_answer_git(processor, model, image, question):
|
|
42 |
generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50, return_dict_in_generate=True, output_scores=True)
|
43 |
print('scores:')
|
44 |
print(generated_ids.scores)
|
45 |
-
scoresList0 = torch.softmax(generated_ids.scores[0], dim=1).flatten().tolist()
|
46 |
-
print(scoresList0)
|
47 |
-
scoresList1 = torch.softmax(generated_ids.scores[1], dim=1).flatten().tolist()
|
48 |
-
print(scoresList1)
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
print('sequences:')
|
50 |
print(generated_ids.sequences)
|
51 |
print(generated_ids)
|
@@ -82,13 +88,13 @@ def generate_answers(image, question):
|
|
82 |
|
83 |
# answer_git_large = generate_answer_git(git_processor_large, git_model_large, image, question)
|
84 |
|
85 |
-
answer_blip_base = generate_answer_blip(blip_processor_base, blip_model_base, image, question)
|
86 |
|
87 |
# answer_blip_large = generate_answer_blip(blip_processor_large, blip_model_large, image, question)
|
88 |
|
89 |
-
answer_vilt = generate_answer_vilt(vilt_processor, vilt_model, image, question)
|
90 |
|
91 |
-
return answer_git_base
|
92 |
|
93 |
|
94 |
examples = [["cats.jpg", "How many cats are there?"], ["stop_sign.png", "What's behind the stop sign?"], ["astronaut.jpg", "What's the astronaut riding on?"]]
|
|
|
25 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
26 |
|
27 |
git_model_base.to(device)
|
28 |
+
# blip_model_base.to(device)
|
29 |
#git_model_large.to(device)
|
30 |
#blip_model_large.to(device)
|
31 |
+
# vilt_model.to(device)
|
32 |
|
33 |
def generate_answer_git(processor, model, image, question):
|
34 |
# prepare image
|
|
|
42 |
generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50, return_dict_in_generate=True, output_scores=True)
|
43 |
print('scores:')
|
44 |
print(generated_ids.scores)
|
45 |
+
# scoresList0 = torch.softmax(generated_ids.scores[0], dim=1).flatten().tolist()
|
46 |
+
# print(scoresList0)
|
47 |
+
# scoresList1 = torch.softmax(generated_ids.scores[1], dim=1).flatten().tolist()
|
48 |
+
# print(scoresList1)
|
49 |
+
idx = generated_ids.scores[0].argmax(-1).item()
|
50 |
+
idx1 = generated_ids.scores[1].argmax(-1).item()
|
51 |
+
print(idx, idx1)
|
52 |
+
ans = model.config.id2label[idx]
|
53 |
+
ans1 = model.config.id2label[idx1]
|
54 |
+
print(ans, ans1)
|
55 |
print('sequences:')
|
56 |
print(generated_ids.sequences)
|
57 |
print(generated_ids)
|
|
|
88 |
|
89 |
# answer_git_large = generate_answer_git(git_processor_large, git_model_large, image, question)
|
90 |
|
91 |
+
# answer_blip_base = generate_answer_blip(blip_processor_base, blip_model_base, image, question)
|
92 |
|
93 |
# answer_blip_large = generate_answer_blip(blip_processor_large, blip_model_large, image, question)
|
94 |
|
95 |
+
# answer_vilt = generate_answer_vilt(vilt_processor, vilt_model, image, question)
|
96 |
|
97 |
+
return answer_git_base
|
98 |
|
99 |
|
100 |
examples = [["cats.jpg", "How many cats are there?"], ["stop_sign.png", "What's behind the stop sign?"], ["astronaut.jpg", "What's the astronaut riding on?"]]
|