File size: 12,989 Bytes
c193173 59cd031 c193173 59cd031 c193173 59cd031 c193173 59cd031 c193173 59cd031 c193173 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
# -*- coding: utf-8 -*-
"""GradioAppTest.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1QhxoNhhM_kcaoQOyz5hsNWLcf2m2L225
"""
# !pip install gradio
# !pip install transformers
import gradio as gr
from transformers import pipeline
"""## JSON"""
# Define the process that the models will be trained for
trainedProcess = "praksa"
trainedProcessJSON = "Praksa"
json = [
{
"name": "Praksa",
"phases": [
{
"name": "Odabir preferencija",
"alias": ["Prijava prakse", "Odabir zadatka", "Prvi korak"],
"description": "Odabir preferencija je prvi korak u procesu polaganja prakse. Zahtjeva da student odabere zadatak sa popisa...",
"duration": "1 mjesec",
},
{
"name": "Ispunjavanje prijavnice",
"description": "Ispunjavanje prijavnice je drugi korak u procesu polaganja prakse. Student mora ispuniti prijavnicu koja se nalazi na stranici kolegija...",
"duration": "1 tjedan",
},
{
"name": "Predaja dnevnika prakse",
"alias": ["Završetak prakse", "Dnevnik"],
"description": "Predaja dnevnika prakse zadnji je korak u procesu polaganja prakse. S završetkom rada, student predaje dnevnik prakse na stranicu kolegija...",
"duration": "3 dana",
},
],
"duration": "2 mjeseca",
},
{
"name": "Izrada završnog rada",
"phases": [
{
"name": "Prijava teme",
"alias": ["Prvi korak"],
"description": "Prvi korak u procesu izrade završnog rada je prijava teme. Zahtjeva da student odabere mentora te prijavi temu sa popisa...",
"duration": "5 dana",
},
{
"name": "Ispuna obrasca",
"description": "Student ispunjava obrazac sa prijavljenom temom...",
"duration": "4 dana",
},
{
"name": "Obrana rada",
"description": "Student brani svoj rad pred komosijom...",
"duration": "1 sat",
},
],
"duration": "3 mjeseca",
},
]
# If tasks do not contain alias propery, assign an empty one to them
for process in json:
for task in process["phases"]:
if "alias" not in task:
task["alias"] = []
"""## User intent recognition model
CPU ~6m
GPU ~3m
"""
# Define training epochs
training_epochs = 10
label_size = 6
# Define dataset URL for training
UIDatasetURL = 'https://docs.google.com/spreadsheets/d/e/2PACX-1vSPR-FPTMBcYRynP4JdwYQQ8dAhSx1x8i1LPckUcuIUUlrWT82b5Thqb1bBNnPeGJPxxX1CJAlFSd6F/pub?output=xlsx'
# Will require runetime restart on Google colab (sometimes, idk)
# !pip install tensorflow_text
# !pip install text-hr
"""### Data loading"""
import tensorflow as tf
import tensorflow_text as tft
import tensorflow_hub as tfh
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
# Text preprocessor for bert based models
preprocessor = tfh.KerasLayer('https://tfhub.dev/google/universal-sentence-encoder-cmlm/multilingual-preprocess/2')
# Language Agnostic BERT sentence encoder
model = tfh.KerasLayer('https://tfhub.dev/google/LaBSE/2')
# Read the data
import pandas as pd
data = pd.read_excel(UIDatasetURL)
columns = ['text', 'intent', 'process']
data.columns = columns
data = data[data["process"] == trainedProcess].drop(columns="process")
"""#### Category merging"""
# Convert categories to codes
data['intent'] = data['intent'].astype('category')
data['intent_codes'] = data['intent'].cat.codes
# Display the distribution of codes
values = data['intent'].value_counts()
plt.stem(values)
"""#### Normalize data
### Text preprocessing
1. Remove punctuation
2. Lowercase the text
3. Apply tokenization
4. Remove stopwords
5. Apply lemmatizer
"""
import string
import re
import nltk
import text_hr
nltk.download('stopwords')
nltk.download('wordnet')
nltk.download('omw-1.4')
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
def remove_punctuation(text):
return "".join([i for i in text if i not in string.punctuation])
def tokenization(text):
return re.split(r"\s+",text)
stopwords = nltk.corpus.stopwords.words('english')
def remove_stopwords(text):
return [i for i in text if i not in stopwords]
porter_stemmer = PorterStemmer()
def stemming(text):
return [porter_stemmer.stem(word) for word in text]
wordnet_lemmatizer = WordNetLemmatizer()
def lemmatizer(text):
return [wordnet_lemmatizer.lemmatize(word) for word in text]
data['text'] = data['text']\
.apply(lambda x: remove_punctuation(x))\
.apply(lambda x: x.lower())\
.apply(lambda x: tokenization(x))\
.apply(lambda x: lemmatizer(x))
stop_words_list_hr = []
for word_base, l_key, cnt, _suff_id, wform_key, wform in text_hr.get_all_std_words():
if word_base is not None: stop_words_list_hr.append(word_base)
if wform is not None: stop_words_list_hr.append(wform)
stop_words_list_hr = list(dict.fromkeys(stop_words_list_hr))
def remove_stopwords_hr(text):
output = [i for i in text if i not in stop_words_list_hr]
return output
data['text'] = data['text'].apply(lambda x: remove_stopwords_hr(x))
data['text'] = data['text'].str.join(" ")
"""### Split validation and training data
Train 75%, validation 25%
"""
codes = data['intent_codes'].unique()
# Variable to understand the meaning behind codes
CODES_REPR = data[["intent_codes", "intent"]].drop_duplicates().sort_values("intent_codes")
def codeToIntent(prediction) -> str:
""" Returns the intent of the prediction, not the code """
return CODES_REPR[CODES_REPR["intent_codes"] == prediction.argmax()].iloc[0]["intent"]
preprocessed_validation_data = pd.DataFrame(columns=data.columns)
preprocessed_train_data = pd.DataFrame(columns=data.columns)
for c in codes:
sample = data[data['intent_codes'] == c]
sample = sample.sample(frac=1)
# val = sample.sample(frac=0.25)
val = sample.sample(frac=0)
train = pd.concat([sample, val]).drop_duplicates(keep=False)
preprocessed_validation_data = preprocessed_validation_data.append(val, ignore_index=True)
preprocessed_train_data = preprocessed_train_data.append(train, ignore_index=True)
# Preprocessed google translation data
train_data_eng = preprocessed_train_data[['text', 'intent_codes']]
train_data_eng.columns = ['text', 'intent_codes']
validation_data_eng = preprocessed_validation_data[['text', 'intent_codes']]
validation_data_eng.columns = ['text', 'intent_codes']
def df_to_dataset(df, shuffle=True, batch_size=16):
df = df.copy()
labels = df.pop('intent_codes')
lables_cat = tf.keras.utils.to_categorical(labels, label_size)
dataset = tf.data.Dataset.from_tensor_slices((dict(df), lables_cat))
if shuffle:
dataset = dataset.shuffle(buffer_size=len(df))
dataset = dataset.batch(batch_size).prefetch(batch_size)
return dataset
_validation = train_data_eng
train_data_eng = df_to_dataset(train_data_eng)
# validation_data_eng = df_to_dataset(validation_data_eng)
validation_data_eng = df_to_dataset(_validation)
"""### Model definition and training
2 epochs training (testing purposes)
"""
# Model builder
def model_build():
inputs = tf.keras.layers.Input(shape=(), dtype=tf.string, name='text')
encoded_input = preprocessor(inputs)
encoder_outputs = model(encoded_input)
x = encoder_outputs['pooled_output']
x = tf.keras.layers.Dropout(0.1)(x)
x = tf.keras.layers.Dense(128, activation='relu')(x)
x = tf.keras.layers.Dropout(0.7)(x)
outputs = tf.keras.layers.Dense(label_size, activation='softmax', name='classifier')(x)
return tf.keras.Model(inputs, outputs)
# Build a model with preprocessed data
model_eng = model_build()
model_eng.compile(
optimizer = tf.keras.optimizers.Adam(0.001),
loss = tf.keras.losses.CategoricalCrossentropy(from_logits=True),
metrics = tf.keras.metrics.CategoricalAccuracy()
)
eng_history = model_eng.fit(
train_data_eng,
epochs = training_epochs,
batch_size = 16,
validation_data = validation_data_eng,
)
"""## Data extraction pipeline"""
# !pip install transformers
from transformers import pipeline
pipe = pipeline("token-classification", model="rkrstacic/bpmn-task-extractor")
"""## Sentence similarity"""
# !pip install -U sentence-transformers
import numpy as np
from typing import List, Dict
# Function that shows the result
def predictNER(text: str) -> Dict:
currentString = "".join([x["word"] for x in pipe(text) if x["entity"] != "LABEL_0"])
# Return dictionary without empty values
return { "Task": currentString.replace("▁", " ")[1:] }
from sentence_transformers import SentenceTransformer, util
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
from typing import List
import torch
def getTaskSimilarityIndex(flatIndex: int, tasks) -> int:
""" Get task index based on the flatten task list """
for index, task in enumerate(tasks):
if flatIndex <= len(task["alias"]):
return index
flatIndex -= len(task["alias"]) + 1
return -1
def getFlattenTasks(tasks) -> List[str]:
""" Returns the flatten version of task names and their aliases """
resTasks = []
for task in tasks:
resTasks.append(task["name"])
resTasks = resTasks + task["alias"]
return resTasks
def taskSimilarity(text: str, tasks) -> int:
""" Returns the task index which is the most similar to the text """
return getTaskSimilarityIndex(torch.argmax(util.pytorch_cos_sim(
model.encode(text, convert_to_tensor=True),
model.encode(getFlattenTasks(tasks), convert_to_tensor=True)
)).item(), tasks)
"""## Using the user intent model"""
def preprocessText(text: str) -> str:
""" Do the same preprocessing as the UI model training input data """
text = remove_punctuation(text)
text = text.lower()
text = tokenization(text)
text = lemmatizer(text)
text = remove_stopwords_hr(text)
return " ".join(text)
def predict_intent(text: str) -> str:
""" Predict the text intent based on the abovetrained model """
return codeToIntent(model_eng.predict([preprocessText(text)], verbose=False))
def getPhases(phases) -> str:
""" P1: Returns the formatted phases """
phases = [phase["name"].lower() for phase in phases]
return ', '.join(phases[:-1]) + ' i ' + phases[-1]
# Define functions that handle output text formatting
def getP1String(process) -> str:
return f"Faze procesa za proces '{process['name']}' su: {getPhases(process['phases'])}"
def getP2String(process) -> str:
return f"Proces '{process['name']}' traje {process['duration']}"
def getP3String(taskName: str, task) -> str:
return f"Kratki opis '{taskName}': {task['description']}"
def getP4String(taskName: str, task) -> str:
return f"Proces '{taskName}' traje {task['duration']}"
def getP5String(taskIndex: int, taskName: str, process) -> str:
if len(process["phases"]) <= taskIndex + 1:
return f"'{taskName}' je zadnji korak u procesu '{process['name']}'"
return f"Nakon '{taskName}' je '{process['phases'][taskIndex + 1]['name'].lower()}'"
def getP6String() -> str:
return "Nažalost, ne razumijem Vaše pitanje"
def print_result(text: str, process) -> None:
""" Chatbot output messages based on intent """
intent = predict_intent(text)
taskIndex = taskSimilarity(text, process["phases"])
task = process["phases"][taskIndex]
taskName = task["name"].lower()
# P1: Koje su faze
if intent == 'P1':
return(getP1String(process))
# P2: Koliko traje cijeli proces
elif intent == 'P2':
return(getP2String(process))
# P3: Kako ide odabir preferencija?
elif intent == 'P3':
return(getP3String(taskName, task))
# P4: Koliko traje {task}
elif intent == 'P4':
return(getP4String(taskName, task))
# P5: Što je nakon {task}
elif intent == 'P5':
return(getP5String(taskIndex, taskName, process))
# Ništa od navedenog
else:
return(getP6String())
def chatbot(input_text) -> None:
""" By: Rafael Krstačić """
processName = trainedProcessJSON
currentProcess = None
for process in json:
if process["name"] == processName:
currentProcess = process
break
else:
raise KeyError("Process does not exist in json")
return print_result(input_text, currentProcess)
"""## Gradio app"""
chatbot("Koliko traje predaja dnevnika prakse")
iface = gr.Interface(
fn=chatbot,
inputs="text",
outputs=["text"],
title="Sentiment Analysis"
)
iface.launch() |