StableVITON / app.py
rlawjdghek's picture
add spaces GPU
700defa
from preprocess.detectron2.projects.DensePose.apply_net_gradio import DensePose4Gradio
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
import os
import sys
import time
from glob import glob
from os.path import join as opj
from pathlib import Path
import gradio as gr
import torch
from omegaconf import OmegaConf
from PIL import Image
import spaces
print(torch.cuda.is_available(), torch.cuda.device_count())
from cldm.model import create_model
from cldm.plms_hacked import PLMSSampler
from utils_stableviton import get_mask_location, get_batch, tensor2img, center_crop
PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute()
sys.path.insert(0, str(PROJECT_ROOT))
IMG_H = 1024
IMG_W = 768
openpose_model_hd = OpenPose(0)
openpose_model_hd.preprocessor.body_estimation.model.to('cuda')
parsing_model_hd = Parsing(0)
densepose_model_hd = DensePose4Gradio(
cfg='preprocess/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_s1x.yaml',
model='https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl',
)
category_dict = ['upperbody', 'lowerbody', 'dress']
category_dict_utils = ['upper_body', 'lower_body', 'dresses']
# #### model init >>>>
config = OmegaConf.load("./configs/VITON.yaml")
config.model.params.img_H = IMG_H
config.model.params.img_W = IMG_W
params = config.model.params
model = create_model(config_path=None, config=config)
model.load_state_dict(torch.load("./checkpoints/eternal_1024.ckpt", map_location="cpu")["state_dict"])
model = model.cuda()
model.eval()
sampler = PLMSSampler(model)
model2 = create_model(config_path=None, config=config)
model2.load_state_dict(torch.load("./checkpoints/VITONHD_1024.ckpt", map_location="cpu")["state_dict"])
model2 = model.cuda()
model2.eval()
sampler2 = PLMSSampler(model2)
# #### model init <<<<
@spaces.GPU
@torch.autocast("cuda")
@torch.no_grad()
def stable_viton_model_hd(
batch,
n_steps,
):
z, cond = model.get_input(batch, params.first_stage_key)
z = z
bs = z.shape[0]
c_crossattn = cond["c_crossattn"][0][:bs]
if c_crossattn.ndim == 4:
c_crossattn = model.get_learned_conditioning(c_crossattn)
cond["c_crossattn"] = [c_crossattn]
uc_cross = model.get_unconditional_conditioning(bs)
uc_full = {"c_concat": cond["c_concat"], "c_crossattn": [uc_cross]}
uc_full["first_stage_cond"] = cond["first_stage_cond"]
for k, v in batch.items():
if isinstance(v, torch.Tensor):
batch[k] = v.cuda()
sampler.model.batch = batch
ts = torch.full((1,), 999, device=z.device, dtype=torch.long)
start_code = model.q_sample(z, ts)
torch.cuda.empty_cache()
output, _, _ = sampler.sample(
n_steps,
bs,
(4, IMG_H//8, IMG_W//8),
cond,
x_T=start_code,
verbose=False,
eta=0.0,
unconditional_conditioning=uc_full,
)
output = model.decode_first_stage(output)
output = tensor2img(output)
pil_output = Image.fromarray(output)
return pil_output
@spaces.GPU
@torch.autocast("cuda")
@torch.no_grad()
def stable_viton_model_hd2(
batch,
n_steps,
):
z, cond = model2.get_input(batch, params.first_stage_key)
z = z
bs = z.shape[0]
c_crossattn = cond["c_crossattn"][0][:bs]
if c_crossattn.ndim == 4:
c_crossattn = model2.get_learned_conditioning(c_crossattn)
cond["c_crossattn"] = [c_crossattn]
uc_cross = model2.get_unconditional_conditioning(bs)
uc_full = {"c_concat": cond["c_concat"], "c_crossattn": [uc_cross]}
uc_full["first_stage_cond"] = cond["first_stage_cond"]
for k, v in batch.items():
if isinstance(v, torch.Tensor):
batch[k] = v.cuda()
sampler2.model.batch = batch
ts = torch.full((1,), 999, device=z.device, dtype=torch.long)
start_code = model2.q_sample(z, ts)
torch.cuda.empty_cache()
output, _, _ = sampler2.sample(
n_steps,
bs,
(4, IMG_H//8, IMG_W//8),
cond,
x_T=start_code,
verbose=False,
eta=0.0,
unconditional_conditioning=uc_full,
)
output = model2.decode_first_stage(output)
output = tensor2img(output)
pil_output = Image.fromarray(output)
return pil_output
@spaces.GPU
@torch.no_grad()
def process_hd(vton_img, garm_img, n_steps, is_custom):
model_type = 'hd'
category = 0 # 0:upperbody; 1:lowerbody; 2:dress
stt = time.time()
print('load images... ', end='')
# garm_img = Image.open(garm_img).resize((IMG_W, IMG_H))
# vton_img = Image.open(vton_img).resize((IMG_W, IMG_H))
garm_img = Image.open(garm_img)
vton_img = Image.open(vton_img)
vton_img = center_crop(vton_img)
garm_img = garm_img.resize((IMG_W, IMG_H))
vton_img = vton_img.resize((IMG_W, IMG_H))
print('%.2fs' % (time.time() - stt))
stt = time.time()
print('get agnostic map... ', end='')
keypoints = openpose_model_hd(vton_img.resize((IMG_W, IMG_H)))
model_parse, _ = parsing_model_hd(vton_img.resize((IMG_W, IMG_H)))
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints, radius=5)
mask = mask.resize((IMG_W, IMG_H), Image.NEAREST)
mask_gray = mask_gray.resize((IMG_W, IMG_H), Image.NEAREST)
masked_vton_img = Image.composite(mask_gray, vton_img, mask) # agnostic map
print('%.2fs' % (time.time() - stt))
stt = time.time()
print('get densepose... ', end='')
vton_img = vton_img.resize((IMG_W, IMG_H)) # size for densepose
densepose = densepose_model_hd.execute(vton_img) # densepose
print('%.2fs' % (time.time() - stt))
batch = get_batch(
vton_img,
garm_img,
densepose,
masked_vton_img,
mask,
IMG_H,
IMG_W
)
if is_custom:
sample = stable_viton_model_hd(
batch,
n_steps,
)
else:
sample = stable_viton_model_hd2(
batch,
n_steps,
)
return sample
example_path = opj(os.path.dirname(__file__), 'examples_eternal')
example_model_ps = sorted(glob(opj(example_path, "model/*")))
example_garment_ps = sorted(glob(opj(example_path, "garment/*")))
with gr.Blocks(css='style.css') as demo:
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<div>
<h1>Rdy2Wr.AI StableVITON Demo πŸ‘•πŸ‘”πŸ‘—</h1>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href='https://arxiv.org/abs/2312.01725'>
<img src="https://img.shields.io/badge/arXiv-2312.01725-red">
</a>
&nbsp;
<a href='https://rlawjdghek.github.io/StableVITON/'>
<img src='https://img.shields.io/badge/page-github.io-blue.svg'>
</a>
&nbsp;
<a href='https://github.com/rlawjdghek/StableVITON'>
<img src='https://img.shields.io/github/stars/rlawjdghek/StableVITON'>
</a>
&nbsp;
<a href='https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode'>
<img src='https://img.shields.io/badge/license-CC_BY--NC--SA_4.0-lightgrey'>
</a>
</div>
</div>
</div>
"""
)
with gr.Row():
gr.Markdown("## Experience virtual try-on with your own images!")
with gr.Row():
with gr.Column():
vton_img = gr.Image(label="Model", type="filepath", height=384, value=example_model_ps[0])
example = gr.Examples(
inputs=vton_img,
examples_per_page=14,
examples=example_model_ps)
with gr.Column():
garm_img = gr.Image(label="Garment", type="filepath", height=384, value=example_garment_ps[0])
example = gr.Examples(
inputs=garm_img,
examples_per_page=14,
examples=example_garment_ps)
with gr.Column():
result_gallery = gr.Image(label='Output', show_label=False, scale=1)
# result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1)
with gr.Column():
run_button = gr.Button(value="Run")
n_steps = gr.Slider(label="Steps", minimum=10, maximum=50, value=20, step=1)
is_custom = gr.Checkbox(label="customized model")
# seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
ips = [vton_img, garm_img, n_steps, is_custom]
run_button.click(fn=process_hd, inputs=ips, outputs=[result_gallery])
demo.queue().launch()