import importlib import os, hashlib import requests from tqdm import tqdm import torch from torch import optim import numpy as np from inspect import isfunction from PIL import Image, ImageDraw, ImageFont URL_MAP = { "vgg_lpips": "https://heibox.uni-heidelberg.de/f/607503859c864bc1b30b/?dl=1" } CKPT_MAP = { "vgg_lpips": "vgg.pth" } MD5_MAP = { "vgg_lpips": "d507d7349b931f0638a25a48a722f98a" } def log_txt_as_img(wh, xc, size=10): # wh a tuple of (width, height) # xc a list of captions to plot b = len(xc) txts = list() for bi in range(b): txt = Image.new("RGB", wh, color="white") draw = ImageDraw.Draw(txt) font = ImageFont.truetype('font/DejaVuSans.ttf', size=size) nc = int(40 * (wh[0] / 256)) lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc)) try: draw.text((0, 0), lines, fill="black", font=font) except UnicodeEncodeError: print("Cant encode string for logging. Skipping.") txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 txts.append(txt) txts = np.stack(txts) txts = torch.tensor(txts) return txts def ismap(x): if not isinstance(x, torch.Tensor): return False return (len(x.shape) == 4) and (x.shape[1] > 3) def isimage(x): if not isinstance(x,torch.Tensor): return False return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) def exists(x): return x is not None def default(val, d): if exists(val): return val return d() if isfunction(d) else d def download(url, local_path, chunk_size=1024): os.makedirs(os.path.split(local_path)[0], exist_ok=True) with requests.get(url, stream=True) as r: total_size = int(r.headers.get("content-length", 0)) with tqdm(total=total_size, unit="B", unit_scale=True) as pbar: with open(local_path, "wb") as f: for data in r.iter_content(chunk_size=chunk_size): if data: f.write(data) pbar.update(chunk_size) def md5_hash(path): with open(path, "rb") as f: content = f.read() return hashlib.md5(content).hexdigest() def get_ckpt_path(name, root, check=False): assert name in URL_MAP path = os.path.join(root, CKPT_MAP[name]) if not os.path.exists(path) or (check and not md5_hash(path) == MD5_MAP[name]): print("Downloading {} model from {} to {}".format(name, URL_MAP[name], path)) download(URL_MAP[name], path) md5 = md5_hash(path) assert md5 == MD5_MAP[name], md5 return path def mean_flat(tensor): """ https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 Take the mean over all non-batch dimensions. """ return tensor.mean(dim=list(range(1, len(tensor.shape)))) def count_params(model, verbose=False): total_params = sum(p.numel() for p in model.parameters()) if verbose: print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.") return total_params def instantiate_from_config(config): if not "target" in config: if config == '__is_first_stage__': return None elif config == "__is_unconditional__": return None raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", dict())) def get_obj_from_str(string, reload=False): module, cls = string.rsplit(".", 1) if reload: module_imp = importlib.import_module(module) importlib.reload(module_imp) return getattr(importlib.import_module(module, package=None), cls) class AdamWwithEMAandWings(optim.Optimizer): # credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298 def __init__(self, params, lr=1.e-3, betas=(0.9, 0.999), eps=1.e-8, # TODO: check hyperparameters before using weight_decay=1.e-2, amsgrad=False, ema_decay=0.9999, # ema decay to match previous code ema_power=1., param_names=()): """AdamW that saves EMA versions of the parameters.""" if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if not 0.0 <= weight_decay: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) if not 0.0 <= ema_decay <= 1.0: raise ValueError("Invalid ema_decay value: {}".format(ema_decay)) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay, ema_power=ema_power, param_names=param_names) super().__init__(params, defaults) def __setstate__(self, state): super().__setstate__(state) for group in self.param_groups: group.setdefault('amsgrad', False) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: params_with_grad = [] grads = [] exp_avgs = [] exp_avg_sqs = [] ema_params_with_grad = [] state_sums = [] max_exp_avg_sqs = [] state_steps = [] amsgrad = group['amsgrad'] beta1, beta2 = group['betas'] ema_decay = group['ema_decay'] ema_power = group['ema_power'] for p in group['params']: if p.grad is None: continue params_with_grad.append(p) if p.grad.is_sparse: raise RuntimeError('AdamW does not support sparse gradients') grads.append(p.grad) state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) # Exponential moving average of parameter values state['param_exp_avg'] = p.detach().float().clone() exp_avgs.append(state['exp_avg']) exp_avg_sqs.append(state['exp_avg_sq']) ema_params_with_grad.append(state['param_exp_avg']) if amsgrad: max_exp_avg_sqs.append(state['max_exp_avg_sq']) # update the steps for each param group update state['step'] += 1 # record the step after step update state_steps.append(state['step']) optim._functional.adamw(params_with_grad, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, amsgrad=amsgrad, beta1=beta1, beta2=beta2, lr=group['lr'], weight_decay=group['weight_decay'], eps=group['eps'], maximize=False) cur_ema_decay = min(ema_decay, 1 - state['step'] ** -ema_power) for param, ema_param in zip(params_with_grad, ema_params_with_grad): ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay) return loss