File size: 3,388 Bytes
4d6d915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from fastapi import FastAPI, Depends, HTTPException, Request
from fastapi.security import APIKeyQuery
from pydantic import BaseModel
from typing import List, Union, Dict
from functools import lru_cache
import jwt
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import torch
from flores200_codes import flores_codes
import gradio as gr

CUSTOM_PATH = "/gradio"

app = FastAPI()


# This should be a secure secret key in a real application
SECRET_KEY = "your_secret_key_here"

# Define the security scheme
api_key_query = APIKeyQuery(name="jwtToken", auto_error=False)


class TranslationRequest(BaseModel):
    strings: List[Union[str, Dict[str, str]]]


class TranslationResponse(BaseModel):
    data: Dict[str, List[str]]


@lru_cache()
def load_model():
    model_name_dict = {
        "nllb-distilled-600M": "facebook/nllb-200-distilled-600M",
    }

    call_name = "nllb-distilled-600M"
    real_name = model_name_dict[call_name]
    print(f"\tLoading model: {call_name}")

    device = "cuda" if torch.cuda.is_available() else "cpu"
    model = AutoModelForSeq2SeqLM.from_pretrained(real_name).to(device)
    tokenizer = AutoTokenizer.from_pretrained(real_name)

    return model, tokenizer


model, tokenizer = load_model()


def translate_text(text: List[str], source_lang: str, target_lang: str) -> List[str]:
    source = flores_codes[source_lang]
    target = flores_codes[target_lang]

    translator = pipeline(
        "translation",
        model=model,
        tokenizer=tokenizer,
        src_lang=source,
        tgt_lang=target,
    )
    output = translator(text, max_length=400)

    return [item["translation_text"] for item in output]


async def verify_token(token: str = Depends(api_key_query)):
    if not token:
        raise HTTPException(status_code=401, detail={"message": "Token is missing"})
    try:
        jwt.decode(token, SECRET_KEY, algorithms=["HS256"])
    except:
        raise HTTPException(status_code=401, detail={"message": "Token is invalid"})
    return token


@app.post("/translate/", response_model=TranslationResponse)
async def translate(
    request: Request,
    source: str,
    target: str,
    project_id: str,
    token: str = Depends(verify_token),
):
    if not all([source, target, project_id]):
        raise HTTPException(
            status_code=400, detail={"message": "Missing required parameters"}
        )

    data = await request.json()
    strings = data.get("strings", [])

    if not strings:
        raise HTTPException(
            status_code=400, detail={"message": "No strings provided for translation"}
        )

    try:
        if isinstance(strings[0], dict):  # Extended request
            translations = translate_text([s["text"] for s in strings], source, target)
        else:  # Simple request
            translations = translate_text(strings, source, target)

        return TranslationResponse(data={"translations": translations})
    except Exception as e:
        raise HTTPException(status_code=500, detail={"message": str(e)})


@app.get("/logo.png")
async def logo():
    # TODO: Implement logic to serve the logo
    return "Logo placeholder"


io = gr.Interface(lambda x: "Hello, " + x + "!", "textbox", "textbox")
app = gr.mount_gradio_app(app, io, path=CUSTOM_PATH)

if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="0.0.0.0", port=8000)