crh_translator / app.py
robinhad's picture
Update app.py
b2a864a verified
# attribution: code for demo is based on https://huggingface.co/spaces/Geonmo/nllb-translation-demo
from fastapi import FastAPI, Depends, HTTPException, Request
from fastapi.security import APIKeyQuery
from pydantic import BaseModel
from typing import List, Union, Dict
from functools import lru_cache
import jwt
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import torch
from flores200_codes import flores_codes
import gradio as gr
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
import uvicorn
from starlette.middleware.base import BaseHTTPMiddleware
import logging
import json
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
CUSTOM_PATH = "/gradio"
app = FastAPI()
class LoggingMiddleware(BaseHTTPMiddleware):
async def dispatch(self, request: Request, call_next):
# Log request info
logger.info(f"--- RAW REQUEST ---")
logger.info(f"Method: {request.method}")
logger.info(f"URL: {request.url}")
logger.info("Headers:")
for name, value in request.headers.items():
logger.info(f" {name}: {value}")
# Get raw body
body = await request.body()
logger.info("Body:")
logger.info(body.decode())
logger.info("--- END RAW REQUEST ---")
# We need to set the body again since we've already read it
request._body = body
response = await call_next(request)
return response
app.add_middleware(LoggingMiddleware)
# This should be a secure secret key in a real application
SECRET_KEY = "your_secret_key_here"
# Define the security scheme
api_key_query = APIKeyQuery(name="jwtToken", auto_error=False)
class TranslationRequest(BaseModel):
strings: List[Union[str, Dict[str, str]]]
class TranslationResponse(BaseModel):
data: Dict[str, List[str]]
@lru_cache()
def load_model():
model_name_dict = {
"nllb-distilled-600M": "facebook/nllb-200-distilled-600M",
}
call_name = "nllb-distilled-600M"
real_name = model_name_dict[call_name]
print(f"\tLoading model: {call_name}")
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForSeq2SeqLM.from_pretrained(real_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(real_name)
return model, tokenizer
model, tokenizer = load_model()
def translate_text(text: List[str], source_lang: str, target_lang: str) -> List[str]:
source = flores_codes[source_lang]
target = flores_codes[target_lang]
translator = pipeline(
"translation",
model=model,
tokenizer=tokenizer,
src_lang=source,
tgt_lang=target,
)
output = translator(text, max_length=400)
return [item["translation_text"] for item in output]
async def verify_token(token: str = Depends(api_key_query)):
if not token:
return "test123"
#raise HTTPException(status_code=401, detail={"message": "Token is missing"})
try:
pass # disable temporarily #jwt.decode(token, SECRET_KEY, algorithms=["HS256"])
except:
raise HTTPException(status_code=401, detail={"message": "Token is invalid"})
return token
@app.get("/translate/", response_model=TranslationResponse)
@app.post("/translate/", response_model=TranslationResponse)
async def translate(
request: Request,
source: str,
target: str,
project_id: str,
token: str = Depends(verify_token),
):
if not all([source, target, project_id]):
raise HTTPException(
status_code=400, detail={"message": "Missing required parameters"}
)
try:
data = await request.json()
except:
data = await request.body()
print("====", data.decode(), "====", sep="\n")
data = json.loads(data.decode())
strings = data.get("strings", [])
if not strings:
raise HTTPException(
status_code=400, detail={"message": "No strings provided for translation"}
)
try:
if isinstance(strings[0], dict): # Extended request
translations = translate_text([s["text"] for s in strings], source, target)
else: # Simple request
translations = translate_text(strings, source, target)
return TranslationResponse(data={"translations": translations})
except Exception as e:
raise HTTPException(status_code=500, detail={"message": str(e)})
@app.get("/logo.png")
async def logo():
# TODO: Implement logic to serve the logo
return "Logo placeholder"
lang_codes = list(flores_codes.keys())
#inputs = [gr.inputs.Radio(['nllb-distilled-600M', 'nllb-1.3B', 'nllb-distilled-1.3B'], label='NLLB Model'),
inputs = [gr.Dropdown(lang_codes, value='English', label='Source'),
gr.Dropdown(lang_codes, value='Crimean Tatar', label='Target'),
gr.Textbox(lines=5, label="Input text"),
]
outputs = gr.Textbox(label="Output")
title = "Crimean Tatar Translator based on NLLB distilled 600M demo"
description = f"Details: https://github.com/facebookresearch/fairseq/tree/nllb."
examples = [
['English', 'Korean', 'Hi. nice to meet you']
]
def translate_single(source_lang: str, target_lang: str, text: str) -> List[str]:
return translate_text([text], source_lang, target_lang)[0]
io = gr.Interface(translate_single,
inputs,
outputs,
title=title,
description=description,
)
app = gr.mount_gradio_app(app, io, path=CUSTOM_PATH)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)