Spaces:
Runtime error
Runtime error
File size: 12,448 Bytes
6124176 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import heapq
import itertools
from abc import ABC, abstractmethod
from collections import defaultdict
from operator import itemgetter
from typing import List, Dict, Tuple
from typing import Sequence
import numpy as np
import torch
from bert_score import BERTScorer
from nltk import PorterStemmer
from spacy.tokens import Doc, Span
from toolz import itertoolz
from transformers import AutoTokenizer
from transformers.tokenization_utils_base import PaddingStrategy
class EmbeddingModel(ABC):
@abstractmethod
def embed(
self,
sents: List[Span]
):
pass
class ContextualEmbedding(EmbeddingModel):
def __init__(self, model, tokenizer_name, max_length):
self.model = model
self.tokenizer = SpacyHuggingfaceTokenizer(tokenizer_name, max_length)
self._device = model.device
def embed(
self,
sents: List[Span]
):
encoded_input, special_tokens_masks, token_alignments = self.tokenizer.batch_encode(sents)
encoded_input = {k: v.to(self._device) for k, v in encoded_input.items()}
with torch.no_grad():
model_output = self.model(**encoded_input)
embeddings = model_output[0].cpu()
spacy_embs_list = []
for embs, mask, token_alignment \
in zip(embeddings, special_tokens_masks, token_alignments):
mask = torch.tensor(mask)
embs = embs[mask == 0] # Filter embeddings at special token positions
spacy_embs = []
for hf_idxs in token_alignment:
if hf_idxs is None:
pooled_embs = torch.zeros_like(embs[0])
else:
pooled_embs = embs[hf_idxs].mean(dim=0) # Pool embeddings that map to the same spacy token
spacy_embs.append(pooled_embs.numpy())
spacy_embs = np.stack(spacy_embs)
spacy_embs = spacy_embs / np.linalg.norm(spacy_embs, axis=-1, keepdims=True) # Normalize
spacy_embs_list.append(spacy_embs)
for embs, sent in zip(spacy_embs_list, sents):
assert len(embs) == len(sent)
return spacy_embs_list
class StaticEmbedding(EmbeddingModel):
def embed(
self,
sents: List[Span]
):
return [
np.stack([t.vector / (t.vector_norm or 1) for t in sent])
for sent in sents
]
class EmbeddingAligner():
def __init__(
self,
embedding: EmbeddingModel,
threshold: float,
top_k: int,
baseline_val=0
):
self.threshold = threshold
self.top_k = top_k
self.embedding = embedding
self.baseline_val = baseline_val
def align(
self,
source: Doc,
targets: Sequence[Doc]
) -> List[Dict]:
"""Compute alignment from summary tokens to doc tokens with greatest semantic similarity
Args:
source: Source spaCy document
targets: Target spaCy documents
Returns: List of alignments, one for each target document
"""
if len(source) == 0:
return [{} for _ in targets]
all_sents = list(source.sents) + list(itertools.chain.from_iterable(target.sents for target in targets))
chunk_sizes = [_iter_len(source.sents)] + \
[_iter_len(target.sents) for target in targets]
all_sents_token_embeddings = self.embedding.embed(all_sents)
chunked_sents_token_embeddings = _split(all_sents_token_embeddings, chunk_sizes)
source_sent_token_embeddings = chunked_sents_token_embeddings[0]
source_token_embeddings = np.concatenate(source_sent_token_embeddings)
for token_idx, token in enumerate(source):
if token.is_stop or token.is_punct:
source_token_embeddings[token_idx] = 0
alignments = []
for i, target in enumerate(targets):
target_sent_token_embeddings = chunked_sents_token_embeddings[i + 1]
target_token_embeddings = np.concatenate(target_sent_token_embeddings)
for token_idx, token in enumerate(target):
if token.is_stop or token.is_punct:
target_token_embeddings[token_idx] = 0
alignment = defaultdict(list)
for score, target_idx, source_idx in self._emb_sim_sparse(
target_token_embeddings,
source_token_embeddings,
):
alignment[target_idx].append((source_idx, score))
# TODO used argpartition to get nlargest
for j in list(alignment):
alignment[j] = heapq.nlargest(self.top_k, alignment[j], itemgetter(1))
alignments.append(alignment)
return alignments
def _emb_sim_sparse(self, embs_1, embs_2):
sim = embs_1 @ embs_2.T
sim = (sim - self.baseline_val) / (1 - self.baseline_val)
keep = sim > self.threshold
keep_idxs_1, keep_idxs_2 = np.where(keep)
keep_scores = sim[keep]
return list(zip(keep_scores, keep_idxs_1, keep_idxs_2))
class BertscoreAligner(EmbeddingAligner):
def __init__(
self,
threshold,
top_k
):
scorer = BERTScorer(lang="en", rescale_with_baseline=True)
model = scorer._model
embedding = ContextualEmbedding(model, "roberta-large", 510)
baseline_val = scorer.baseline_vals[2].item()
super(BertscoreAligner, self).__init__(
embedding, threshold, top_k, baseline_val
)
class StaticEmbeddingAligner(EmbeddingAligner):
def __init__(
self,
threshold,
top_k
):
embedding = StaticEmbedding()
super(StaticEmbeddingAligner, self).__init__(
embedding, threshold, top_k
)
class NGramAligner():
def __init__(self):
self.stemmer = PorterStemmer()
def align(
self,
source: Doc,
targets: List[Doc],
) -> List[Dict]:
alignments = []
source_ngram_spans = self._get_ngram_spans(source)
for target in targets:
target_ngram_spans = self._get_ngram_spans(target)
alignments.append(
self._align_ngrams(target_ngram_spans, source_ngram_spans)
)
return alignments
def _get_ngram_spans(
self,
doc: Doc,
):
ngrams = []
for sent in doc.sents:
for n in range(1, len(list(sent))):
tokens = [t for t in sent if not (t.is_stop or t.is_punct)]
ngrams.extend(_ngrams(tokens, n))
def ngram_key(ngram):
return tuple(self.stemmer.stem(token.text).lower() for token in ngram)
key_to_ngrams = itertoolz.groupby(ngram_key, ngrams)
key_to_spans = {}
for k, grouped_ngrams in key_to_ngrams.items():
key_to_spans[k] = [
(ngram[0].i, ngram[-1].i + 1)
for ngram in grouped_ngrams
]
return key_to_spans
def _align_ngrams(
self,
ngram_spans_1: Dict[Tuple[str], List[Tuple[int, int]]],
ngram_spans_2: Dict[Tuple[str], List[Tuple[int, int]]]
) -> Dict[Tuple[int, int], List[Tuple[int, int]]]:
"""Align ngram spans between two documents
Args:
ngram_spans_1: Map from (normalized_token1, normalized_token2, ...) n-gram tuple to a list of token spans
of format (start_pos, end_pos)
ngram_spans_2: Same format as above, but for second text
Returns: map from each (start, end) span in text 1 to list of aligned (start, end) spans in text 2
"""
if not ngram_spans_1 or not ngram_spans_2:
return {}
max_span_end_1 = max(span[1] for span in itertools.chain.from_iterable(ngram_spans_1.values()))
token_is_available_1 = [True] * max_span_end_1 #
matched_keys = list(set(ngram_spans_1.keys()) & set(ngram_spans_2.keys())) # Matched normalized ngrams betwee
matched_keys.sort(key=len, reverse=True) # Process n-grams from longest to shortest
alignment = defaultdict(list) # Map from each matched span in text 1 to list of aligned spans in text 2
for key in matched_keys:
spans_1 = ngram_spans_1[key]
spans_2 = ngram_spans_2[key]
available_spans_1 = [span for span in spans_1 if all(token_is_available_1[slice(*span)])]
matched_spans_1 = []
if available_spans_1 and spans_2:
# if ngram can be matched to available spans in both sequences
for span in available_spans_1:
# It's possible that these newly matched spans may be overlapping with one another, so
# check that token positions still available (only one span allowed ber token in text 1):
if all(token_is_available_1[slice(*span)]):
matched_spans_1.append(span)
token_is_available_1[slice(*span)] = [False] * (span[1] - span[0])
for span1 in matched_spans_1:
alignment[span1] = spans_2
return alignment
class SpacyHuggingfaceTokenizer:
def __init__(
self,
model_name,
max_length
):
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
self.max_length = max_length
def batch_encode(
self,
sents: List[Span]
):
token_alignments = []
token_ids_list = []
# Tokenize each sentence and special tokens.
for sent in sents:
hf_tokens, token_alignment = self.tokenize(sent)
token_alignments.append(token_alignment)
token_ids = self.tokenizer.convert_tokens_to_ids(hf_tokens)
encoding = self.tokenizer.prepare_for_model(
token_ids,
add_special_tokens=True,
padding=False,
)
token_ids_list.append(encoding['input_ids'])
# Add padding
max_length = max(map(len, token_ids_list))
attention_mask = []
input_ids = []
special_tokens_masks = []
for token_ids in token_ids_list:
encoding = self.tokenizer.prepare_for_model(
token_ids,
padding=PaddingStrategy.MAX_LENGTH,
max_length=max_length,
add_special_tokens=False
)
input_ids.append(encoding['input_ids'])
attention_mask.append(encoding['attention_mask'])
special_tokens_masks.append(
self.tokenizer.get_special_tokens_mask(
encoding['input_ids'],
already_has_special_tokens=True
)
)
encoded = {
'input_ids': torch.tensor(input_ids),
'attention_mask': torch.tensor(attention_mask)
}
return encoded, special_tokens_masks, token_alignments
def tokenize(
self,
sent
):
"""Convert spacy sentence to huggingface tokens and compute the alignment"""
hf_tokens = []
token_alignment = []
for i, token in enumerate(sent):
# "Tokenize" each word individually, so as to track the alignment between spaCy/HF tokens
# Prefix all tokens with a space except the first one in the sentence
if i == 0:
token_text = token.text
else:
token_text = ' ' + token.text
start_hf_idx = len(hf_tokens)
word_tokens = self.tokenizer.tokenize(token_text)
end_hf_idx = len(hf_tokens) + len(word_tokens)
if end_hf_idx < self.max_length:
hf_tokens.extend(word_tokens)
hf_idxs = list(range(start_hf_idx, end_hf_idx))
else:
hf_idxs = None
token_alignment.append(hf_idxs)
return hf_tokens, token_alignment
def _split(data, sizes):
it = iter(data)
return [[next(it) for _ in range(size)] for size in sizes]
def _iter_len(it):
return sum(1 for _ in it)
# TODO set up batching
# To get top K axis and value per row: https://stackoverflow.com/questions/42832711/using-np-argpartition-to-index-values-in-a-multidimensional-array
def _ngrams(tokens, n):
for i in range(len(tokens) - n + 1):
yield tokens[i:i + n]
|