Spaces:
Runtime error
Runtime error
File size: 25,210 Bytes
6124176 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
import logging
import os
from argparse import ArgumentParser
from ast import literal_eval
from types import SimpleNamespace
from typing import List
from robustnessgym import Dataset, Spacy, CachedOperation
from robustnessgym.core.constants import CACHEDOPS
from robustnessgym.core.tools import strings_as_json
from robustnessgym.logging.utils import set_logging_level
from spacy import load
from spacy.attrs import DEP, IS_ALPHA, IS_PUNCT, IS_STOP, LEMMA, LOWER, TAG, SENT_END, \
SENT_START, ORTH, POS, ENT_IOB
from spacy.tokens import Doc
from align import BertscoreAligner, NGramAligner, StaticEmbeddingAligner
from utils import preprocess_text
set_logging_level('critical')
logger = logging.getLogger(__name__)
logger.setLevel(logging.CRITICAL)
def _spacy_encode(self, x):
arr = x.to_array(
[DEP, IS_ALPHA, IS_PUNCT, IS_STOP, LEMMA, LOWER, TAG, SENT_END, SENT_START,
ORTH, POS, ENT_IOB])
return {
'arr': arr.flatten(),
'shape': list(arr.shape),
'words': [t.text for t in x]
}
def _spacy_decode(self, x):
doc = Doc(self.nlp.vocab, words=x['words'])
return doc.from_array(
[DEP, IS_ALPHA, IS_PUNCT, IS_STOP, LEMMA, LOWER,
TAG, SENT_END, SENT_START, ORTH, POS, ENT_IOB],
x['arr'].reshape(x['shape'])
)
Spacy.encode = _spacy_encode
Spacy.decode = _spacy_decode
class AlignerCap(CachedOperation):
def __init__(
self,
aligner,
spacy,
**kwargs,
):
super(AlignerCap, self).__init__(**kwargs)
self.spacy = spacy
self.aligner = aligner
@classmethod
def encode(cls, x):
# Convert to built-in types from np.int / np.float
return super(AlignerCap, cls).encode([
{str(k): [(int(t[0]), float(t[1])) for t in v] for k, v in d.items()}
for d in x
])
@classmethod
def decode(cls, x):
x = super(AlignerCap, cls).decode(x)
x = [{literal_eval(k): v for k, v in d.items()} for d in x]
return x
def apply(self, batch, columns, *args, **kwargs):
# Run the aligner on the first example of the batch
return [
self.aligner.align(
self.spacy.retrieve(batch, columns[0])[0],
[self.spacy.retrieve(batch, col)[0] for col in columns[1:]]
if len(columns) > 2 else
[self.spacy.retrieve(batch, columns[1])[0]],
)
]
class BertscoreAlignerCap(AlignerCap):
def __init__(
self,
threshold: float,
top_k: int,
spacy,
):
super(BertscoreAlignerCap, self).__init__(
aligner=BertscoreAligner(threshold=threshold, top_k=top_k),
spacy=spacy,
threshold=threshold,
top_k=top_k,
)
class NGramAlignerCap(AlignerCap):
def __init__(
self,
spacy,
):
super(NGramAlignerCap, self).__init__(
aligner=NGramAligner(),
spacy=spacy
)
class StaticEmbeddingAlignerCap(AlignerCap):
def __init__(
self,
threshold: float,
top_k: int,
spacy,
):
super(StaticEmbeddingAlignerCap, self).__init__(
aligner=StaticEmbeddingAligner(threshold=threshold, top_k=top_k),
spacy=spacy,
threshold=threshold,
top_k=top_k,
)
def _run_aligners(
dataset: Dataset,
aligners: List[CachedOperation],
doc_column: str,
reference_column: str,
summary_columns: List[str] = None,
):
if not summary_columns:
summary_columns = []
to_columns = []
if reference_column is not None:
to_columns.append(reference_column)
to_columns.extend(summary_columns)
for aligner in aligners:
# Run the aligner on (document, summary) pairs
dataset = aligner(
dataset,
[doc_column] + to_columns,
# Must use `batch_size = 1`
batch_size=1,
)
if reference_column is not None and len(summary_columns):
# Run the aligner on (reference, summary) pairs
dataset = aligner(
dataset,
[reference_column] + summary_columns,
# Must use `batch_size = 1`
batch_size=1,
)
if len(to_columns) > 1:
# Instead of having one column for (document, summary) comparisons, split
# off into (1 + |summary_columns|) total columns, one for each comparison
# Retrieve the (document, summary) column
doc_summary_column = aligner.retrieve(
dataset[:],
[doc_column] + to_columns,
)[tuple([doc_column] + to_columns)]
for i, col in enumerate(to_columns):
# Add as a new column after encoding with the aligner's `encode` method
dataset.add_column(
column=str(aligner.identifier(columns=[doc_column, col])),
values=[aligner.encode([row[i]]) for row in doc_summary_column],
)
# Remove the (document, summary) column
dataset.remove_column(
str(
aligner.identifier(
columns=[doc_column] + to_columns
)
)
)
del dataset.interactions[CACHEDOPS].history[
(
aligner.identifier,
strings_as_json(
strings=[doc_column] + to_columns
)
)
]
if reference_column is not None and len(summary_columns) > 1:
# Instead of having one column for (reference, summary) comparisons, split
# off into (|summary_columns|) total columns, one for each comparison
# Retrieve the (reference, summary) column
reference_summary_column = aligner.retrieve(
dataset[:],
[reference_column] + summary_columns,
)[tuple([reference_column] + summary_columns)]
for i, col in enumerate(summary_columns):
# Add as a new column
dataset.add_column(
column=str(aligner.identifier(columns=[reference_column, col])),
values=[
aligner.encode([row[i]]) for row in reference_summary_column
]
)
# Remove the (reference, summary) column
dataset.remove_column(
str(
aligner.identifier(
columns=[reference_column] + summary_columns
)
)
)
del dataset.interactions[CACHEDOPS].history[
(
aligner.identifier,
strings_as_json(
strings=[reference_column] + summary_columns
)
)
]
return dataset
def deanonymize_dataset(
rg_path: str,
standardized_dataset: Dataset,
processed_dataset_path: str = None,
n_samples: int = None,
):
"""Take an anonymized dataset and add back the original dataset columns."""
assert processed_dataset_path is not None, \
"Please specify a path to save the dataset."
# Load the dataset
dataset = Dataset.load_from_disk(rg_path)
if n_samples:
dataset.set_visible_rows(list(range(n_samples)))
standardized_dataset.set_visible_rows(list(range(n_samples)))
text_columns = []
# Add columns from the standardized dataset
dataset.add_column('document', standardized_dataset['document'])
text_columns.append('document')
if 'summary:reference' in standardized_dataset.column_names:
dataset.add_column('summary:reference', standardized_dataset['summary:reference'])
text_columns.append('summary:reference')
# Preprocessing all the text columns
dataset = dataset.update(
lambda x: {f'preprocessed_{k}': preprocess_text(x[k]) for k in text_columns}
)
# Run the Spacy pipeline on all preprocessed text columns
try:
nlp = load('en_core_web_lg')
except OSError:
nlp = load('en_core_web_sm')
nlp.add_pipe('sentencizer', before="parser")
spacy = Spacy(nlp=nlp)
dataset = spacy(
dataset,
[f'preprocessed_{col}' for col in text_columns],
batch_size=100,
)
# Directly save to disk
dataset.save_to_disk(processed_dataset_path)
return dataset
def run_workflow(
jsonl_path: str = None,
dataset: Dataset = None,
doc_column: str = None,
reference_column: str = None,
summary_columns: List[str] = None,
bert_aligner_threshold: float = 0.5,
bert_aligner_top_k: int = 3,
embedding_aligner_threshold: float = 0.5,
embedding_aligner_top_k: int = 3,
processed_dataset_path: str = None,
n_samples: int = None,
anonymize: bool = False,
):
assert (jsonl_path is None) != (dataset is None), \
"One of `jsonl_path` and `dataset` must be specified."
assert processed_dataset_path is not None, \
"Please specify a path to save the dataset."
# Load the dataset
if jsonl_path is not None:
dataset = Dataset.from_jsonl(jsonl_path)
if doc_column is None:
# Assume `doc_column` is called "document"
doc_column = 'document'
assert doc_column in dataset.column_names, \
f"`doc_column={doc_column}` is not a column in dataset."
print("Assuming `doc_column` is called 'document'.")
if reference_column is None:
# Assume `reference_column` is called "summary:reference"
reference_column = 'summary:reference'
print("Assuming `reference_column` is called 'summary:reference'.")
if reference_column not in dataset.column_names:
print("No reference summary loaded")
reference_column = None
if summary_columns is None or len(summary_columns) == 0:
# Assume `summary_columns` are prefixed by "summary:"
summary_columns = []
for col in dataset.column_names:
if col.startswith("summary:") and col != "summary:reference":
summary_columns.append(col)
print(f"Reading summary columns from dataset. Found {summary_columns}.")
if len(summary_columns) == 0 and reference_column is None:
raise ValueError("At least one summary is required")
# Set visible rows to restrict to the first `n_samples`
if n_samples:
dataset.set_visible_rows(list(range(n_samples)))
# Combine the text columns into one list
text_columns = [doc_column] + ([reference_column] if reference_column else []) + summary_columns
# Preprocessing all the text columns
dataset = dataset.update(
lambda x: {f'preprocessed_{k}': preprocess_text(x[k]) for k in text_columns}
)
# Run the Spacy pipeline on all preprocessed text columns
nlp = load('en_core_web_lg')
nlp.add_pipe('sentencizer', before="parser")
spacy = Spacy(nlp=nlp)
dataset = spacy(
dataset,
[f'preprocessed_{col}' for col in text_columns],
batch_size=100,
)
# Run the 3 align pipelines
bert_aligner = BertscoreAlignerCap(
threshold=bert_aligner_threshold,
top_k=bert_aligner_top_k,
spacy=spacy,
)
embedding_aligner = StaticEmbeddingAlignerCap(
threshold=embedding_aligner_threshold,
top_k=embedding_aligner_top_k,
spacy=spacy,
)
ngram_aligner = NGramAlignerCap(
spacy=spacy,
)
dataset = _run_aligners(
dataset=dataset,
aligners=[bert_aligner, embedding_aligner, ngram_aligner],
doc_column=f'preprocessed_{doc_column}',
reference_column=f'preprocessed_{reference_column}' if reference_column else None,
summary_columns=[f'preprocessed_{col}' for col in summary_columns],
)
# Save the dataset
if anonymize:
# Remove certain columns to anonymize and save to disk
for col in [doc_column, reference_column]:
if col is not None:
dataset.remove_column(col)
dataset.remove_column(f'preprocessed_{col}')
dataset.remove_column(
str(spacy.identifier(columns=[f'preprocessed_{col}']))
)
del dataset.interactions[CACHEDOPS].history[
(spacy.identifier, f'preprocessed_{col}')
]
dataset.save_to_disk(f'{processed_dataset_path}.anonymized')
else:
# Directly save to disk
dataset.save_to_disk(processed_dataset_path)
return dataset
def parse_prediction_jsonl_name(prediction_jsonl: str):
"""Parse the name of the prediction_jsonl to extract useful information."""
# Analyze the name of the prediction_jsonl
filename = prediction_jsonl.split("/")[-1]
# Check that the filename ends with `.results.anonymized`
if filename.endswith(".results.anonymized"):
# Fmt: <model>-<training dataset>.<eval dataset>.<eval split>.results.anonymized
# Split using a period
model_train_dataset, eval_dataset, eval_split = filename.split(".")[:-2]
model, train_dataset = model_train_dataset.split("-")
return SimpleNamespace(
model_train_dataset=model_train_dataset,
model=model,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
eval_split=eval_split,
)
raise NotImplementedError(
"Prediction files must be named "
"<model>-<training dataset>.<eval dataset>.<eval split>.results.anonymized. "
f"Please rename the prediction file {filename} and run again."
)
def join_predictions(
dataset_jsonl: str = None,
prediction_jsonls: str = None,
save_jsonl_path: str = None,
):
"""Join predictions with a dataset."""
assert prediction_jsonls is not None, "Must have prediction jsonl files."
print(
"> Warning: please inspect the prediction .jsonl file to make sure that "
"predictions are aligned with the examples in the dataset. "
"Use `get_dataset` to inspect the dataset."
)
# Load the dataset
dataset = get_dataset(dataset_jsonl=dataset_jsonl)
# Parse names of all prediction files to get metadata
metadata = [
parse_prediction_jsonl_name(prediction_jsonl)
for prediction_jsonl in prediction_jsonls
]
# Load the predictions
predictions = [
Dataset.from_jsonl(json_path=prediction_jsonl)
for prediction_jsonl in prediction_jsonls
]
# Predictions for a model
for i, prediction_data in enumerate(predictions):
# Get metadata for i_th prediction file
metadata_i = metadata[i]
# Construct a prefix for columns added to the dataset for this prediction file
prefix = metadata_i.model_train_dataset
# Add the predictions column to the dataset
for col in prediction_data.column_names:
# Don't add the indexing information since the dataset has it already
if col not in {'index', 'ix', 'id'}:
# `add_column` will automatically ensure that column lengths match
if col == 'decoded': # rename decoded to summary
dataset.add_column(f'summary:{prefix}', prediction_data[col])
else:
dataset.add_column(f'{prefix}:{col}', prediction_data[col])
# Save the dataset back to disk
if save_jsonl_path:
dataset.to_jsonl(save_jsonl_path)
else:
print("Dataset with predictions was not saved since `save_jsonl_path` "
"was not specified.")
return dataset
def standardize_dataset(
dataset_name: str = None,
dataset_version: str = None,
dataset_split: str = 'test',
dataset_jsonl: str = None,
doc_column: str = None,
reference_column: str = None,
save_jsonl_path: str = None,
no_save: bool = False,
):
"""Load a dataset from Huggingface and dump it to disk."""
# Load the dataset from Huggingface
dataset = get_dataset(
dataset_name=dataset_name,
dataset_version=dataset_version,
dataset_split=dataset_split,
dataset_jsonl=dataset_jsonl,
)
if doc_column is None:
if reference_column is not None:
raise ValueError("You must specify `doc_column` if you specify `reference_column`")
try:
doc_column, reference_column = {
'cnn_dailymail': ('article', 'highlights'),
'xsum': ('document', 'summary')
}[dataset_name]
except:
raise NotImplementedError(
"Please specify `doc_column`."
)
# Rename the columns
if doc_column != 'document':
dataset.add_column('document', dataset[doc_column])
dataset.remove_column(doc_column)
dataset.add_column('summary:reference', dataset[reference_column])
dataset.remove_column(reference_column)
# Save the dataset back to disk
if save_jsonl_path:
dataset.to_jsonl(save_jsonl_path)
elif (save_jsonl_path is None) and not no_save:
# Auto-create a path to save the standardized dataset
os.makedirs('preprocessing', exist_ok=True)
if not dataset_jsonl:
dataset.to_jsonl(
f'preprocessing/'
f'standardized_{dataset_name}_{dataset_version}_{dataset_split}.jsonl'
)
else:
dataset.to_jsonl(
f'preprocessing/'
f'standardized_{dataset_jsonl.split("/")[-1]}'
)
return dataset
def get_dataset(
dataset_name: str = None,
dataset_version: str = None,
dataset_split: str = 'test',
dataset_jsonl: str = None,
):
"""Load a dataset."""
assert (dataset_name is not None) != (dataset_jsonl is not None), \
"Specify one of `dataset_name` or `dataset_jsonl`."
# Load the dataset
if dataset_name is not None:
return get_hf_dataset(dataset_name, dataset_version, dataset_split)
return Dataset.from_jsonl(json_path=dataset_jsonl)
def get_hf_dataset(name: str, version: str = None, split: str = 'test'):
"""Get dataset from Huggingface."""
if version:
return Dataset.load_dataset(name, version, split=split)
return Dataset.load_dataset(name, split=split)
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--dataset', type=str, choices=['cnn_dailymail', 'xsum'],
help="Huggingface dataset name.")
parser.add_argument('--version', type=str,
help="Huggingface dataset version.")
parser.add_argument('--split', type=str, default='test',
help="Huggingface dataset split.")
parser.add_argument('--dataset_jsonl', type=str,
help="Path to a jsonl file for the dataset.")
parser.add_argument('--dataset_rg', type=str,
help="Path to a dataset stored in the Robustness Gym format. "
"All processed datasets are stored in this format.")
parser.add_argument('--prediction_jsonls', nargs='+', default=[],
help="Path to one or more jsonl files for the predictions.")
parser.add_argument('--save_jsonl_path', type=str,
help="Path to save the processed jsonl dataset.")
parser.add_argument('--doc_column', type=str,
help="Name of the document column in the dataset.")
parser.add_argument('--reference_column', type=str,
help="Name of the reference summary column in the dataset.")
parser.add_argument('--summary_columns', nargs='+', default=[],
help="Name of other summary columns in/added to the dataset.")
parser.add_argument('--bert_aligner_threshold', type=float, default=0.1,
help="Minimum threshold for BERT alignment.")
parser.add_argument('--bert_aligner_top_k', type=int, default=10,
help="Top-k for BERT alignment.")
parser.add_argument('--embedding_aligner_threshold', type=float, default=0.1,
help="Minimum threshold for embedding alignment.")
parser.add_argument('--embedding_aligner_top_k', type=int, default=10,
help="Top-k for embedding alignment.")
parser.add_argument('--processed_dataset_path', type=str,
help="Path to store the final processed dataset.")
parser.add_argument('--n_samples', type=int,
help="Number of dataset samples to process.")
parser.add_argument('--workflow', action='store_true', default=False,
help="Whether to run the preprocessing workflow.")
parser.add_argument('--standardize', action='store_true', default=False,
help="Whether to standardize the dataset and save to jsonl.")
parser.add_argument('--join_predictions', action='store_true', default=False,
help="Whether to add predictions to the dataset and save to "
"jsonl.")
parser.add_argument('--try_it', action='store_true', default=False,
help="`Try it` mode is faster and runs processing on 10 "
"examples.")
parser.add_argument('--deanonymize', action='store_true', default=False,
help="Deanonymize the dataset provided by summvis.")
parser.add_argument('--anonymize', action='store_true', default=False,
help="Anonymize by removing document and reference summary "
"columns of the original dataset.")
args = parser.parse_args()
if args.standardize:
# Dump a dataset to jsonl on disk after standardizing it
standardize_dataset(
dataset_name=args.dataset,
dataset_version=args.version,
dataset_split=args.split,
dataset_jsonl=args.dataset_jsonl,
doc_column=args.doc_column,
reference_column=args.reference_column,
save_jsonl_path=args.save_jsonl_path,
)
if args.join_predictions:
# Join the predictions with the dataset
dataset = join_predictions(
dataset_jsonl=args.dataset_jsonl,
prediction_jsonls=args.prediction_jsonls,
save_jsonl_path=args.save_jsonl_path,
)
if args.workflow:
# Run the processing workflow
dataset = None
# Check if `args.dataset_rg` was passed in
if args.dataset_rg:
# Load the dataset directly
dataset = Dataset.load_from_disk(args.dataset_rg)
run_workflow(
jsonl_path=args.dataset_jsonl,
dataset=dataset,
doc_column=args.doc_column,
reference_column=args.reference_column,
summary_columns=args.summary_columns,
bert_aligner_threshold=args.bert_aligner_threshold,
bert_aligner_top_k=args.bert_aligner_top_k,
embedding_aligner_threshold=args.embedding_aligner_threshold,
embedding_aligner_top_k=args.embedding_aligner_top_k,
processed_dataset_path=args.processed_dataset_path,
n_samples=args.n_samples if not args.try_it else 10,
anonymize=args.anonymize,
)
if args.deanonymize:
# Deanonymize an anonymized dataset
# Check if `args.dataset_rg` was passed in
assert args.dataset_rg is not None, \
"Must specify `dataset_rg` path to be deanonymized."
assert args.dataset_rg.endswith('anonymized'), \
"`dataset_rg` must end in 'anonymized'."
assert (args.dataset is None) != (args.dataset_jsonl is None), \
"`dataset_rg` points to an anonymized dataset that will be " \
"deanonymized. Please pass in relevant arguments: either " \
"`dataset`, `version` and `split` OR `dataset_jsonl`."
# Load the standardized dataset
standardized_dataset = standardize_dataset(
dataset_name=args.dataset,
dataset_version=args.version,
dataset_split=args.split,
dataset_jsonl=args.dataset_jsonl,
doc_column=args.doc_column,
reference_column=args.reference_column,
no_save=True,
)
# Use it to deanonymize
dataset = deanonymize_dataset(
rg_path=args.dataset_rg,
standardized_dataset=standardized_dataset,
processed_dataset_path=args.processed_dataset_path,
n_samples=args.n_samples if not args.try_it else 10,
)
|