File size: 9,018 Bytes
75467e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31e5a9b
75467e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import torch
import theme

theme = theme.Theme()

import os
import sys
sys.path.append('../..')

#langchain
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.prompts import ChatPromptTemplate
from langchain.schema import StrOutputParser
from langchain.schema.runnable import Runnable
from langchain.schema.runnable.config import RunnableConfig
from langchain.chains import (
    LLMChain, ConversationalRetrievalChain)
from langchain.vectorstores import Chroma
from langchain.memory import ConversationBufferMemory
from langchain.chains import LLMChain
from langchain.prompts.prompt import PromptTemplate
from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate,  MessagesPlaceholder
from langchain.document_loaders import PyPDFDirectoryLoader
from pydantic import BaseModel, Field
from langchain.output_parsers import PydanticOutputParser
from langchain_community.llms import HuggingFaceHub
from langchain_community.document_loaders import WebBaseLoader

from pydantic import BaseModel
import shutil

custom_title ="<span style='color: #92b96a;'>Green Greta</span>"


from huggingface_hub import from_pretrained_keras

import tensorflow as tf
from tensorflow import keras
from PIL import Image

# Cell 1: Image Classification Model
model1 = from_pretrained_keras("rocioadlc/EfficientNetV2L")

# Define class labels
class_labels = ['battery',
 'biological',
 'brown-glass',
 'cardboard',
 'clothes',
 'green-glass',
 'metal',
 'paper',
 'plastic',
 'shoes',
 'trash',
 'white-glass']

# Function to predict image label and score
def predict_image(input):
    # Resize the image to the size expected by the model
    image = input.resize((244, 224))
    # Convert the image to a NumPy array
    image_array = tf.keras.preprocessing.image.img_to_array(image)
    # Normalize the image
    image_array /= 255.0
    # Expand the dimensions to create a batch
    image_array = tf.expand_dims(image_array, 0)
    # Predict using the model
    predictions = model1.predict(image_array)
    
    # Get the predicted class label
    predicted_class_index = tf.argmax(predictions, axis=1).numpy()[0]
    predicted_class_label = class_labels[predicted_class_index]
    
    # Get the confidence score of the predicted class
    confidence_score = predictions[0][predicted_class_index]
    
    # Return predicted class label and confidence score
    return {predicted_class_label: confidence_score}


image_gradio_app = gr.Interface(
    fn=predict_image,
    inputs=gr.Image(label="Image", sources=['upload', 'webcam'], type="pil"),
    outputs=[gr.Label(label="Result")],
    title=custom_title,
    theme=theme
)

loader = WebBaseLoader(["https://www.epa.gov/recycle/frequent-questions-recycling", "https://www.whitehorsedc.gov.uk/vale-of-white-horse-district-council/recycling-rubbish-and-waste/lets-get-real-about-recycling/", "https://www.teimas.com/blog/13-preguntas-y-respuestas-sobre-la-ley-de-residuos-07-2022", "https://www.molok.com/es/blog/gestion-de-residuos-solidos-urbanos-rsu-10-dudas-comunes"])
data=loader.load()
# split documents
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=1024,
    chunk_overlap=150,
    length_function=len
)
docs = text_splitter.split_documents(data)
# define embedding
embeddings = HuggingFaceEmbeddings(model_name='thenlper/gte-small')
# create vector database from data
persist_directory = 'docs/chroma/'

# Remove old database files if any
shutil.rmtree(persist_directory, ignore_errors=True)
vectordb = Chroma.from_documents(
    documents=docs,
    embedding=embeddings,
    persist_directory=persist_directory
)
# define retriever
retriever = vectordb.as_retriever(search_kwargs={"k": 2}, search_type="mmr")

class FinalAnswer(BaseModel):
    question: str = Field(description="the original question")
    answer: str = Field(description="the extracted answer")

# Assuming you have a parser for the FinalAnswer class
parser = PydanticOutputParser(pydantic_object=FinalAnswer)

template = """
Your name is Greta and you are a recycling chatbot with the objective to anwer questions from user in English or Spanish /
Use the following pieces of context to answer the question /
If the question is English answer in English /
If the question is Spanish answer in Spanish /
Do not mention the word context when you answer a question /
Answer the question fully and provide as much relevant detail as possible. Do not cut your response short /
Context: {context}
User: {question}
{format_instructions}
"""

# Create the chat prompt templates
sys_prompt = SystemMessagePromptTemplate.from_template(template)
qa_prompt = ChatPromptTemplate(
    messages=[
        sys_prompt,
        HumanMessagePromptTemplate.from_template("{question}")],
    partial_variables={"format_instructions": parser.get_format_instructions()}
)
llm = HuggingFaceHub(
    repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
    task="text-generation",
    model_kwargs={
        "max_new_tokens": 2000,
        "top_k": 30,
        "temperature": 0.1,
        "repetition_penalty": 1.03
    },
)

qa_chain = ConversationalRetrievalChain.from_llm(
    llm = llm,
    memory = ConversationBufferMemory(llm=llm, memory_key="chat_history", input_key='question', output_key='output'),
    retriever = retriever,
    verbose = True,
    combine_docs_chain_kwargs={'prompt': qa_prompt},
    get_chat_history = lambda h : h,
    rephrase_question = False,
    output_key = 'output',
)

def chat_interface(question,history):
    result = qa_chain.invoke({'question': question})
    output_string = result['output']

    # Find the index of the last occurrence of "answer": in the string
    answer_index = output_string.rfind('"answer":')

    # Extract the substring starting from the "answer": index
    answer_part = output_string[answer_index + len('"answer":'):].strip()

    # Find the next occurrence of a double quote to get the start of the answer value
    quote_index = answer_part.find('"')

    # Extract the answer value between double quotes
    answer_value = answer_part[quote_index + 1:answer_part.find('"', quote_index + 1)]
    
    return answer_value


chatbot_gradio_app = gr.ChatInterface(
    fn=chat_interface,
    title=custom_title
)

banner_tab_content = """
<div style="background-color: #d3e3c3; text-align: center; padding: 20px; display: flex; flex-direction: column; align-items: center;">
    <img src="https://huggingface.co/spaces/rocioadlc/test_4/resolve/main/front_4.jpg" alt="Banner Image" style="width: 50%; max-width: 500px; margin: 0 auto;">
    <h1 style="font-size: 24px; color: "#92b96a"; margin-top: 20px;">¡Bienvenido a nuestro clasificador de imágenes y chatbot para un reciclaje más inteligente!♻️</h1>
    <p style="font-size: 16px; color: "#92b96a"; text-align: justify;">¿Alguna vez te has preguntado si puedes reciclar un objeto en particular? ¿O te has sentido abrumado por la cantidad de residuos que generas y no sabes cómo manejarlos de manera más sostenible? ¡Estás en el lugar correcto!</p>
    <p style="font-size: 16px; color: "#92b96a"; text-align: justify;">Nuestra plataforma combina la potencia de la inteligencia artificial con la comodidad de un chatbot para brindarte respuestas rápidas y precisas sobre qué objetos son reciclables y cómo hacerlo de la manera más eficiente.</p>
    <p style="font-size: 16px; text-align:center;"><strong><span style="color: "#92b96a";">¿Cómo usarlo?</span></strong>
    <ul style="list-style-type: disc; text-align: justify; margin-top: 20px; padding-left: 20px;">
        <li style="font-size: 16px; color: "#92b96a";"><strong><span style="color: "#92b96a";">Green Greta Image Classification:</span></strong> Ve a la pestaña Greta Image Classification y simplemente carga una foto del objeto que quieras reciclar, y nuestro modelo de identificará de qué se trata🕵️‍♂️ para que puedas desecharlo adecuadamente.</li>
        <li style="font-size: 16px; color: "#92b96a";"><strong><span style="color: "#92b96a";">Green Greta Chat:</span></strong> ¿Tienes preguntas sobre reciclaje, materiales específicos o prácticas sostenibles? ¡Pregunta a nuestro chatbot en la pestaña Green Greta Chat!📝 Está aquí para responder todas tus preguntas y ayudarte a tomar decisiones más informadas sobre tu reciclaje.</li>
    </ul>
</div>
"""
banner_tab = gr.Markdown(banner_tab_content)

# Combine both interfaces into a single app
app = gr.TabbedInterface(
    [banner_tab, image_gradio_app, chatbot_gradio_app],
    tab_names=["Welcome to Green Greta", "Green Greta Image Classification", "Green Greta Chat"],
    theme=theme
)

app.queue()
app.launch()