Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -55,13 +55,13 @@ class_labels = ['cardboard', 'glass', 'metal', 'paper', 'plastic', 'trash']
|
|
55 |
# Function to predict image label and score
|
56 |
def predict_image(input):
|
57 |
# Resize the image to the size expected by the model and convert to numpy array
|
58 |
-
image_array = tf.keras.preprocessing.image.img_to_array(input.resize((
|
59 |
# Normalize the image
|
60 |
image_array = tf.keras.applications.efficientnet.preprocess_input(image_array)
|
61 |
# Expand the dimensions to create a batch
|
62 |
image_array = tf.expand_dims(image_array, 0)
|
63 |
# Predict using the model
|
64 |
-
predictions =
|
65 |
class_labels = ['cardboard', 'glass', 'metal', 'paper', 'plastic', 'trash']
|
66 |
category_scores = {}
|
67 |
for i, class_label in enumerate(class_labels):
|
@@ -70,7 +70,6 @@ def predict_image(input):
|
|
70 |
return category_scores
|
71 |
|
72 |
|
73 |
-
|
74 |
loader = WebBaseLoader(["https://www.epa.gov/recycle/frequent-questions-recycling", "https://www.whitehorsedc.gov.uk/vale-of-white-horse-district-council/recycling-rubbish-and-waste/lets-get-real-about-recycling/", "https://www.teimas.com/blog/13-preguntas-y-respuestas-sobre-la-ley-de-residuos-07-2022", "https://www.molok.com/es/blog/gestion-de-residuos-solidos-urbanos-rsu-10-dudas-comunes"])
|
75 |
data=loader.load()
|
76 |
# split documents
|
|
|
55 |
# Function to predict image label and score
|
56 |
def predict_image(input):
|
57 |
# Resize the image to the size expected by the model and convert to numpy array
|
58 |
+
image_array = tf.keras.preprocessing.image.img_to_array(input.resize((244, 224))) # Cambiar el orden de las dimensiones
|
59 |
# Normalize the image
|
60 |
image_array = tf.keras.applications.efficientnet.preprocess_input(image_array)
|
61 |
# Expand the dimensions to create a batch
|
62 |
image_array = tf.expand_dims(image_array, 0)
|
63 |
# Predict using the model
|
64 |
+
predictions = model1.predict(image_array)
|
65 |
class_labels = ['cardboard', 'glass', 'metal', 'paper', 'plastic', 'trash']
|
66 |
category_scores = {}
|
67 |
for i, class_label in enumerate(class_labels):
|
|
|
70 |
return category_scores
|
71 |
|
72 |
|
|
|
73 |
loader = WebBaseLoader(["https://www.epa.gov/recycle/frequent-questions-recycling", "https://www.whitehorsedc.gov.uk/vale-of-white-horse-district-council/recycling-rubbish-and-waste/lets-get-real-about-recycling/", "https://www.teimas.com/blog/13-preguntas-y-respuestas-sobre-la-ley-de-residuos-07-2022", "https://www.molok.com/es/blog/gestion-de-residuos-solidos-urbanos-rsu-10-dudas-comunes"])
|
74 |
data=loader.load()
|
75 |
# split documents
|