|
import ONNXVITS_models |
|
import utils |
|
from text import text_to_sequence |
|
import torch |
|
import commons |
|
|
|
def get_text(text, hps): |
|
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners) |
|
if hps.data.add_blank: |
|
text_norm = commons.intersperse(text_norm, 0) |
|
text_norm = torch.LongTensor(text_norm) |
|
return text_norm |
|
|
|
hps = utils.get_hparams_from_file("../vits/pretrained_models/uma87.json") |
|
symbols = hps.symbols |
|
net_g = ONNXVITS_models.SynthesizerTrn( |
|
len(symbols), |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model) |
|
_ = net_g.eval() |
|
_ = utils.load_checkpoint("../vits/pretrained_models/uma_1153000.pth", net_g) |
|
|
|
text1 = get_text("γγγγ¨γγγγγΎγγ", hps) |
|
stn_tst = text1 |
|
with torch.no_grad(): |
|
x_tst = stn_tst.unsqueeze(0) |
|
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) |
|
sid = torch.tensor([0]) |
|
o = net_g(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1) |