roman
commited on
Commit
•
62e68d5
1
Parent(s):
8dd0371
update requirements.txt, add whisper small ukr
Browse files- app.py +39 -11
- app2.py +41 -0
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,22 +1,39 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
|
|
3 |
import tempfile
|
4 |
from pydub import AudioSegment
|
|
|
5 |
|
6 |
# Define available models
|
7 |
-
available_models = [
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
|
11 |
-
st.
|
|
|
|
|
12 |
|
13 |
# Model selection dropdown
|
14 |
-
model_choice = st.selectbox("Choose a
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
# Load the selected Whisper model
|
17 |
st.write(f"Loading {model_choice} model...")
|
18 |
-
model =
|
19 |
st.write(f"{model_choice} model loaded successfully.")
|
|
|
20 |
# File uploader for audio file
|
21 |
uploaded_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "m4a"])
|
22 |
|
@@ -26,7 +43,7 @@ if uploaded_file is not None:
|
|
26 |
temp_file.write(uploaded_file.read())
|
27 |
temp_file_path = temp_file.name
|
28 |
|
29 |
-
# Convert audio file to a format supported by
|
30 |
audio = AudioSegment.from_file(temp_file_path)
|
31 |
temp_wav_path = tempfile.mktemp(suffix=".wav")
|
32 |
audio.export(temp_wav_path, format="wav")
|
@@ -35,7 +52,18 @@ if uploaded_file is not None:
|
|
35 |
|
36 |
st.write("Transcribing audio...")
|
37 |
|
38 |
-
#
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
st.write("Transcription:")
|
41 |
-
st.write(
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoModelForSpeechSeq2Seq, Wav2Vec2Processor
|
3 |
+
import torch
|
4 |
import tempfile
|
5 |
from pydub import AudioSegment
|
6 |
+
import numpy as np
|
7 |
|
8 |
# Define available models
|
9 |
+
# available_models = [
|
10 |
+
# "facebook/s2t-small-mustc-en-fr-st",
|
11 |
+
# "facebook/s2t-medium-mustc-en-fr-st",
|
12 |
+
# "facebook/s2t-large-mustc-en-fr-st"
|
13 |
+
# ]
|
14 |
|
15 |
+
available_models = ["Yehor/whisper-small-ukrainian"]
|
16 |
|
17 |
+
st.title("Voice Recognition App using SpeechSeq2Seq")
|
18 |
+
|
19 |
+
st.write("Upload an audio file and choose a model to transcribe it to text.")
|
20 |
|
21 |
# Model selection dropdown
|
22 |
+
model_choice = st.selectbox("Choose a SpeechSeq2Seq model", available_models)
|
23 |
+
|
24 |
+
|
25 |
+
# Load the selected model and processor
|
26 |
+
@st.cache_resource
|
27 |
+
def load_model_and_processor(model_name):
|
28 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name)
|
29 |
+
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
30 |
+
return model, processor
|
31 |
+
|
32 |
|
|
|
33 |
st.write(f"Loading {model_choice} model...")
|
34 |
+
model, processor = load_model_and_processor(model_choice)
|
35 |
st.write(f"{model_choice} model loaded successfully.")
|
36 |
+
|
37 |
# File uploader for audio file
|
38 |
uploaded_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "m4a"])
|
39 |
|
|
|
43 |
temp_file.write(uploaded_file.read())
|
44 |
temp_file_path = temp_file.name
|
45 |
|
46 |
+
# Convert audio file to a format supported by the processor (if necessary)
|
47 |
audio = AudioSegment.from_file(temp_file_path)
|
48 |
temp_wav_path = tempfile.mktemp(suffix=".wav")
|
49 |
audio.export(temp_wav_path, format="wav")
|
|
|
52 |
|
53 |
st.write("Transcribing audio...")
|
54 |
|
55 |
+
# Load audio
|
56 |
+
audio_input = AudioSegment.from_file(temp_wav_path).set_frame_rate(16000).set_channels(1)
|
57 |
+
audio_input = np.array(audio_input.get_array_of_samples())
|
58 |
+
|
59 |
+
# Process the audio
|
60 |
+
input_features = processor(audio_input, return_tensors="pt", sampling_rate=16000).input_values
|
61 |
+
|
62 |
+
# Generate transcription
|
63 |
+
with torch.no_grad():
|
64 |
+
predicted_ids = model.generate(input_features)
|
65 |
+
|
66 |
+
transcription = processor.batch_decode(predicted_ids)[0]
|
67 |
+
|
68 |
st.write("Transcription:")
|
69 |
+
st.write(transcription)
|
app2.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import whisper
|
3 |
+
import tempfile
|
4 |
+
from pydub import AudioSegment
|
5 |
+
|
6 |
+
# Define available models
|
7 |
+
available_models = ["tiny", "base", "small", "medium", "large"]
|
8 |
+
|
9 |
+
st.title("Voice Recognition App")
|
10 |
+
|
11 |
+
st.write("Upload an audio file and choose a Whisper model to transcribe it to text.")
|
12 |
+
|
13 |
+
# Model selection dropdown
|
14 |
+
model_choice = st.selectbox("Choose a Whisper model", available_models)
|
15 |
+
|
16 |
+
# Load the selected Whisper model
|
17 |
+
st.write(f"Loading {model_choice} model...")
|
18 |
+
model = whisper.load_model(model_choice)
|
19 |
+
st.write(f"{model_choice} model loaded successfully.")
|
20 |
+
# File uploader for audio file
|
21 |
+
uploaded_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "m4a"])
|
22 |
+
|
23 |
+
if uploaded_file is not None:
|
24 |
+
# Save the uploaded file temporarily
|
25 |
+
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
|
26 |
+
temp_file.write(uploaded_file.read())
|
27 |
+
temp_file_path = temp_file.name
|
28 |
+
|
29 |
+
# Convert audio file to a format supported by Whisper (if necessary)
|
30 |
+
audio = AudioSegment.from_file(temp_file_path)
|
31 |
+
temp_wav_path = tempfile.mktemp(suffix=".wav")
|
32 |
+
audio.export(temp_wav_path, format="wav")
|
33 |
+
|
34 |
+
st.audio(uploaded_file, format="audio/wav")
|
35 |
+
|
36 |
+
st.write("Transcribing audio...")
|
37 |
+
|
38 |
+
# Transcribe audio using Whisper model
|
39 |
+
result = model.transcribe(temp_wav_path)
|
40 |
+
st.write("Transcription:")
|
41 |
+
st.write(result["text"])
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
streamlit
|
2 |
transformers
|
3 |
pydub
|
4 |
-
openai-whisper
|
|
|
|
1 |
streamlit
|
2 |
transformers
|
3 |
pydub
|
4 |
+
openai-whisper
|
5 |
+
torch
|