Spaces:
Runtime error
Runtime error
File size: 6,019 Bytes
40166c5 141eb78 40166c5 141eb78 40166c5 141eb78 40166c5 141eb78 40166c5 141eb78 40166c5 141eb78 40166c5 141eb78 40166c5 141eb78 40166c5 141eb78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import evaluate
import datasets
import numpy as np
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import evaluate
from evaluate import logging
# TODO: Add BibTeX citation
_CITATION = """\
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
This metric quantifies the faithfulness of a summary wrt to a source document,
as given by the probability that the document is entailed by the summary.
This metric uses pretrained models apt for the Newswire domain (see ScEntFaithfulness
for a version in scientific domain).
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each prediction represents a summary and
should be a string with tokens separated by spaces
references: list of references for each prediction. Each
reference represents the input document and should be a string with tokens separated by spaces.
Returns:
ent-faith: description of the first score,
Examples:
Examples should be written in doctest format, and should illustrate how
to use the function.
>>> my_new_module = evaluate.load("my_new_module")
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
>>> print(results)
{'ent-faith': 1.0}
"""
# TODO: Define external resources urls if needed
# BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class NwEntFaithfulness(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
'predictions': datasets.Value('int64'),
'references': datasets.Value('int64'),
}),
# Homepage of the module for documentation
homepage="https://huggingface.co/spaces/ronaldahmed/nwentfaithfulness",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
pass
# original: references
def _compute(self, predictions, documents,
batch_size: int = 16, device=None):
MODEL_CACHE_DIR="/gfs/team/nlp/users/rcardena/tools/huggingface"
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
device = "cuda"
else:
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForSequenceClassification.from_pretrained(
"ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli",
cache_dir=MODEL_CACHE_DIR)
model = model.to(device)
tokenizer = AutoTokenizer.from_pretrained(
"ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli",
cache_dir=MODEL_CACHE_DIR)
max_tokenized_len = model.config.max_length | 256
encoded_texts = []
attn_masks = []
tok_types = []
for pred,doc in zip(predictions,documents):
enc = tokenizer.encode_plus(pred, doc,
max_length=max_tokenized_len,
padding=True,
truncation=True,
return_token_type_ids=True,
return_attention_mask=True)
encoded_texts.append(enc["input_ids"])
attn_masks.append(enc["attention_mask"])
tok_types.append(enc["token_type_ids"])
enf_fs = []
for start_index in logging.tqdm(range(0, len(encoded_texts), batch_size)):
end_index = min(start_index + batch_size, len(encoded_texts))
encoded_batch = torch.Long(encoded_texts[start_index:end_index]).to(device)
attn_mask = torch.Long(attn_masks[start_index:end_index]).to(device)
token_type = torch.Long(tok_types[start_index:end_index]).to(device)
with torch.no_grad():
outputs = model(encoded_batch,
attention_mask=attn_mask,
token_type_ids=token_type,
labels=None)[0]
probs = torch.softmax(outputs,dim=1)[:,0].tolist()
enf_fs += probs
return {"ent-faith": enf_fs, "mean_ent-faith": np.mean(enf_fs)} |