File size: 6,019 Bytes
40166c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141eb78
 
 
 
 
40166c5
 
 
 
141eb78
40166c5
 
 
 
 
141eb78
 
 
 
40166c5
 
 
 
 
 
 
141eb78
 
 
 
40166c5
141eb78
40166c5
 
 
 
 
 
 
141eb78
40166c5
 
 
141eb78
40166c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141eb78
40166c5
 
 
 
 
 
 
 
 
 
141eb78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

import evaluate
import datasets
import numpy as np
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import evaluate
from evaluate import logging


# TODO: Add BibTeX citation
_CITATION = """\

}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
This metric quantifies the faithfulness of a summary wrt to a source document,
as given by the probability that the document is entailed by the summary.
This metric uses pretrained models apt for the Newswire domain (see ScEntFaithfulness 
for a version in scientific domain).
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. Each prediction represents a summary and
        should be a string with tokens separated by spaces
    references: list of references for each prediction. Each
        reference represents the input document and should be a string with tokens separated by spaces.
Returns:
    ent-faith: description of the first score,
Examples:
    Examples should be written in doctest format, and should illustrate how
    to use the function.

    >>> my_new_module = evaluate.load("my_new_module")
    >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
    >>> print(results)
    {'ent-faith': 1.0}
"""

# TODO: Define external resources urls if needed
# BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class NwEntFaithfulness(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features({
                'predictions': datasets.Value('int64'),
                'references': datasets.Value('int64'),
            }),
            # Homepage of the module for documentation
            homepage="https://huggingface.co/spaces/ronaldahmed/nwentfaithfulness",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"]
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        # TODO: Download external resources if needed
        pass

    # original: references
    def _compute(self, predictions, documents,
                    batch_size: int = 16, device=None):
        
        MODEL_CACHE_DIR="/gfs/team/nlp/users/rcardena/tools/huggingface"
        if device is not None:
            assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
            if device == "gpu":
                device = "cuda"
        else:
            device = "cuda" if torch.cuda.is_available() else "cpu"
        model = AutoModelForSequenceClassification.from_pretrained(
                        "ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli",
                        cache_dir=MODEL_CACHE_DIR)
        model = model.to(device)

        tokenizer = AutoTokenizer.from_pretrained(
                            "ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli",
                            cache_dir=MODEL_CACHE_DIR)
        max_tokenized_len = model.config.max_length | 256

        encoded_texts = []
        attn_masks = []
        tok_types = []
        for pred,doc in zip(predictions,documents):
            enc = tokenizer.encode_plus(pred, doc,
                                        max_length=max_tokenized_len,
                                        padding=True,
                                        truncation=True,
                                        return_token_type_ids=True,
                                        return_attention_mask=True)
            encoded_texts.append(enc["input_ids"])
            attn_masks.append(enc["attention_mask"])
            tok_types.append(enc["token_type_ids"])
        

        enf_fs = []
        for start_index in logging.tqdm(range(0, len(encoded_texts), batch_size)):
            end_index = min(start_index + batch_size, len(encoded_texts))
            encoded_batch = torch.Long(encoded_texts[start_index:end_index]).to(device)
            attn_mask = torch.Long(attn_masks[start_index:end_index]).to(device)
            token_type = torch.Long(tok_types[start_index:end_index]).to(device)

            with torch.no_grad():
                outputs = model(encoded_batch,
                                attention_mask=attn_mask,
                                token_type_ids=token_type,
                                labels=None)[0]
                probs = torch.softmax(outputs,dim=1)[:,0].tolist()
            enf_fs += probs

        return {"ent-faith": enf_fs, "mean_ent-faith": np.mean(enf_fs)}