Spaces:
Runtime error
Runtime error
File size: 3,264 Bytes
e756a65 abf9047 e756a65 abf9047 d1d8eae abf9047 d1d8eae abf9047 61d63d5 d1d8eae 61d63d5 abf9047 61d63d5 e756a65 61d63d5 e756a65 61d63d5 e756a65 61d63d5 e756a65 61d63d5 e756a65 61d63d5 e756a65 abf9047 e756a65 abf9047 e756a65 abf9047 e756a65 abf9047 e756a65 61d63d5 e756a65 61d63d5 e756a65 61d63d5 e756a65 61d63d5 e756a65 61d63d5 e756a65 61d63d5 abf9047 61d63d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
if (document.location.search.includes('dark-theme=true')) {
document.body.classList.add('dark-theme');
}
let cursor = 0;
const RANGE = 5;
const LIMIT = 16_000;
const textToImage = async (text) => {
const inferenceResponse = await fetch(`infer_biggan?input=${text}`);
const inferenceBlob = await inferenceResponse.blob();
return URL.createObjectURL(inferenceBlob);
};
const translateText = async (text) => {
const inferResponse = await fetch(`infer_t5?input=${text}`);
const inferJson = await inferResponse.json();
return inferJson.output;
};
const queryDataset = async (start, end) => {
const queryResponse = await fetch(`query_emotion?start=${start}&end=${end}`);
const queryJson = await queryResponse.json();
return queryJson.output;
};
const updateTable = async (cursor, range = RANGE) => {
const table = document.querySelector('.dataset-output');
const fragment = new DocumentFragment();
const observations = await queryDataset(cursor, cursor + range);
for (const observation of observations) {
let row = document.createElement('tr');
let text = document.createElement('td');
let emotion = document.createElement('td');
text.textContent = observation.text;
emotion.textContent = observation.emotion;
row.appendChild(text);
row.appendChild(emotion);
fragment.appendChild(row);
}
table.innerHTML = '';
table.appendChild(fragment);
table.insertAdjacentHTML(
'afterbegin',
`<thead>
<tr>
<td>text</td>
<td>emotion</td>
</tr>
</thead>`
);
};
const imageGenSelect = document.getElementById('image-gen-input');
const imageGenImage = document.querySelector('.image-gen-output');
const textGenForm = document.querySelector('.text-gen-form');
const tableButtonPrev = document.querySelector('.table-previous');
const tableButtonNext = document.querySelector('.table-next');
imageGenSelect.addEventListener('change', async (event) => {
const value = event.target.value;
try {
imageGenImage.src = await textToImage(value);
imageGenImage.alt = value + ' generated from BigGAN AI model';
} catch (err) {
console.error(err);
}
});
textGenForm.addEventListener('submit', async (event) => {
event.preventDefault();
const textGenInput = document.getElementById('text-gen-input');
const textGenParagraph = document.querySelector('.text-gen-output');
try {
textGenParagraph.textContent = await translateText(textGenInput.value);
} catch (err) {
console.error(err);
}
});
tableButtonPrev.addEventListener('click', () => {
cursor = cursor > RANGE ? cursor - RANGE : 0;
if (cursor < RANGE) {
tableButtonPrev.classList.add('hidden');
}
if (cursor < LIMIT - RANGE) {
tableButtonNext.classList.remove('hidden');
}
updateTable(cursor);
});
tableButtonNext.addEventListener('click', () => {
cursor = cursor < LIMIT - RANGE ? cursor + RANGE : cursor;
if (cursor >= RANGE) {
tableButtonPrev.classList.remove('hidden');
}
if (cursor >= LIMIT - RANGE) {
tableButtonNext.classList.add('hidden');
}
updateTable(cursor);
});
textToImage(imageGenSelect.value)
.then((image) => (imageGenImage.src = image))
.catch(console.error);
updateTable(cursor)
.catch(console.error);
|