File size: 4,534 Bytes
5231633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from einops import rearrange
import torch.fft as fft
class Linear(torch.nn.Linear):
    def reset_parameters(self):
        return None

class Conv2d(torch.nn.Conv2d):
    def reset_parameters(self):
        return None



class Attention2D(nn.Module):
    def __init__(self, c, nhead, dropout=0.0):
        super().__init__()
        self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True)

    def forward(self, x, kv, self_attn=False):
        orig_shape = x.shape
        x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1)  # Bx4xHxW -> Bx(HxW)x4
        if self_attn:
            #print('in line 23 algong self att ', kv.shape, x.shape)
            kv = torch.cat([x, kv], dim=1)
            #if x.shape[1] >= 72 * 72:
            #  x = x * math.sqrt(math.log(64*64, 24*24))
           
        x = self.attn(x, kv, kv, need_weights=False)[0]
        x = x.permute(0, 2, 1).view(*orig_shape)
        return x


class LayerNorm2d(nn.LayerNorm):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def forward(self, x):
        return super().forward(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)

class GlobalResponseNorm(nn.Module):
    "from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105"
    def __init__(self, dim):
        super().__init__()
        self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
        self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))

    def forward(self, x):
        Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
        Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
        return self.gamma * (x * Nx) + self.beta + x


class ResBlock(nn.Module):
    def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0):  # , num_heads=4, expansion=2):
        super().__init__()
        self.depthwise = Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c)
        #         self.depthwise = SAMBlock(c, num_heads, expansion)
        self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
        self.channelwise = nn.Sequential(
            Linear(c + c_skip, c * 4),
            nn.GELU(),
            GlobalResponseNorm(c * 4),
            nn.Dropout(dropout),
            Linear(c * 4, c)
        )

    def forward(self, x, x_skip=None):
        x_res = x
        x = self.norm(self.depthwise(x))
        if x_skip is not None:
            x = torch.cat([x, x_skip], dim=1)
        x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
        return x + x_res


class AttnBlock(nn.Module):
    def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0):
        super().__init__()
        self.self_attn = self_attn
        self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
        self.attention = Attention2D(c, nhead, dropout)
        self.kv_mapper = nn.Sequential(
            nn.SiLU(),
            Linear(c_cond, c)
        )

    def forward(self, x, kv):
        kv = self.kv_mapper(kv)
        res = self.attention(self.norm(x), kv, self_attn=self.self_attn)
        
        #print(torch.unique(res), torch.unique(x), self.self_attn) 
        #scale = math.sqrt(math.log(x.shape[-2] * x.shape[-1], 24*24))
        x = x + res
     
        return x

class FeedForwardBlock(nn.Module):
    def __init__(self, c, dropout=0.0):
        super().__init__()
        self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
        self.channelwise = nn.Sequential(
            Linear(c, c * 4),
            nn.GELU(),
            GlobalResponseNorm(c * 4),
            nn.Dropout(dropout),
            Linear(c * 4, c)
        )

    def forward(self, x):
        x = x + self.channelwise(self.norm(x).permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
        return x


class TimestepBlock(nn.Module):
    def __init__(self, c, c_timestep, conds=['sca']):
        super().__init__()
        self.mapper = Linear(c_timestep, c * 2)
        self.conds = conds
        for cname in conds:
            setattr(self, f"mapper_{cname}", Linear(c_timestep, c * 2))

    def forward(self, x, t):
        t = t.chunk(len(self.conds) + 1, dim=1)
        a, b = self.mapper(t[0])[:, :, None, None].chunk(2, dim=1)
        for i, c in enumerate(self.conds):
            ac, bc = getattr(self, f"mapper_{c}")(t[i + 1])[:, :, None, None].chunk(2, dim=1)
            a, b = a + ac, b + bc
        return x * (1 + a) + b