File size: 10,582 Bytes
7467e65
 
4da2d90
 
2991135
 
4da2d90
2991135
9632f25
69d6988
4da2d90
2991135
 
4da2d90
 
 
2991135
 
 
f8ce661
2991135
 
79b12f9
9632f25
4da2d90
e3799c1
 
4da2d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3799c1
 
 
 
 
 
0bfbc18
e3799c1
 
 
 
 
 
 
 
 
 
4da2d90
91d3bd5
 
 
 
 
 
 
 
 
9632f25
5f1b905
9632f25
 
91d3bd5
9632f25
 
05f54e2
fe5b9c4
 
 
 
 
 
5f1b905
91d3bd5
5f1b905
05f54e2
5f1b905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfbc18
5f1b905
 
 
3e96d90
5f1b905
 
 
 
9632f25
 
82a71e3
91d3bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4c639b
 
91d3bd5
 
e4c639b
91d3bd5
 
 
 
 
 
 
 
fe5b9c4
91d3bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
9632f25
a31c900
fe5b9c4
e4c639b
 
fe5b9c4
 
4da2d90
bda1aec
91d3bd5
e4c639b
05f54e2
9632f25
fe5b9c4
e4c639b
fe5b9c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14ee7bd
 
 
 
 
e2aa2f3
4da2d90
a31c900
 
 
 
 
 
 
 
5f1b905
0f14741
5f1b905
 
 
 
 
14ee7bd
5f1b905
e4c639b
9632f25
a31c900
5f1b905
 
 
14ee7bd
e4c639b
a7665b5
14ee7bd
c93bbf7
ee3e703
 
e4c639b
 
 
ee3e703
e4c639b
14ee7bd
ee3e703
c1316e6
ee3e703
 
5f1b905
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import spaces

import os
import requests
import time

import torch

from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from diffusers.models import AutoencoderKL
from diffusers.models.attention_processor import AttnProcessor2_0

from PIL import Image
import cv2
import numpy as np

from RealESRGAN import RealESRGAN

import gradio as gr
from gradio_imageslider import ImageSlider

USE_TORCH_COMPILE = False
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

def download_file(url, folder_path, filename):
    if not os.path.exists(folder_path):
        os.makedirs(folder_path)
    file_path = os.path.join(folder_path, filename)

    if os.path.isfile(file_path):
        print(f"File already exists: {file_path}")
    else:
        response = requests.get(url, stream=True)
        if response.status_code == 200:
            with open(file_path, 'wb') as file:
                for chunk in response.iter_content(chunk_size=1024):
                    file.write(chunk)
            print(f"File successfully downloaded and saved: {file_path}")
        else:
            print(f"Error downloading the file. Status code: {response.status_code}")

def download_models():
    models = {
        "MODEL": ("https://huggingface.co/dantea1118/juggernaut_reborn/resolve/main/juggernaut_reborn.safetensors?download=true", "models/models/Stable-diffusion", "juggernaut_reborn.safetensors"),
        "UPSCALER_X2": ("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x2.pth?download=true", "models/upscalers/", "RealESRGAN_x2.pth"),
        "UPSCALER_X4": ("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x4.pth?download=true", "models/upscalers/", "RealESRGAN_x4.pth"),
        "NEGATIVE_1": ("https://huggingface.co/philz1337x/embeddings/resolve/main/verybadimagenegative_v1.3.pt?download=true", "models/embeddings", "verybadimagenegative_v1.3.pt"),
        # "NEGATIVE_2": ("https://huggingface.co/datasets/AddictiveFuture/sd-negative-embeddings/resolve/main/JuggernautNegative-neg.pt?download=true", "models/embeddings", "JuggernautNegative-neg.pt"),
        "LORA_1": ("https://huggingface.co/philz1337x/loras/resolve/main/SDXLrender_v2.0.safetensors?download=true", "models/Lora", "SDXLrender_v2.0.safetensors"),
        "LORA_2": ("https://huggingface.co/philz1337x/loras/resolve/main/more_details.safetensors?download=true", "models/Lora", "more_details.safetensors"),
        "CONTROLNET": ("https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11f1e_sd15_tile.pth?download=true", "models/ControlNet", "control_v11f1e_sd15_tile.pth"),
        "VAE": ("https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.safetensors?download=true", "models/VAE", "vae-ft-mse-840000-ema-pruned.safetensors"),
    }

    for model, (url, folder, filename) in models.items():
        download_file(url, folder, filename)

download_models()

def timer_func(func):
    def wrapper(*args, **kwargs):
        start_time = time.time()
        result = func(*args, **kwargs)
        end_time = time.time()
        print(f"{func.__name__} took {end_time - start_time:.2f} seconds")
        return result
    return wrapper

class LazyLoadPipeline:
    def __init__(self):
        self.pipe = None

    @timer_func
    def load(self):
        if self.pipe is None:
            print("Starting to load the pipeline...")
            self.pipe = self.setup_pipeline()
            print(f"Moving pipeline to device: {device}")
            self.pipe.to(device)
            if USE_TORCH_COMPILE:
                print("Compiling the model...")
                self.pipe.unet = torch.compile(self.pipe.unet, mode="reduce-overhead", fullgraph=True)

    @timer_func
    def setup_pipeline(self):
        print("Setting up the pipeline...")
        controlnet = ControlNetModel.from_single_file(
            "models/ControlNet/control_v11f1e_sd15_tile.pth", torch_dtype=torch.float16
        )
        safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
        model_path = "models/models/Stable-diffusion/juggernaut_reborn.safetensors"
        pipe = StableDiffusionControlNetImg2ImgPipeline.from_single_file(
            model_path,
            controlnet=controlnet,
            torch_dtype=torch.float16,
            use_safetensors=True,
            safety_checker=safety_checker
        )
        vae = AutoencoderKL.from_single_file(
            "models/VAE/vae-ft-mse-840000-ema-pruned.safetensors",
            torch_dtype=torch.float16
        )
        pipe.vae = vae
        pipe.load_textual_inversion("models/embeddings/verybadimagenegative_v1.3.pt")
        # pipe.load_textual_inversion("models/embeddings/JuggernautNegative-neg.pt")
        pipe.load_lora_weights("models/Lora/SDXLrender_v2.0.safetensors")
        pipe.fuse_lora(lora_scale=0.5)
        pipe.load_lora_weights("models/Lora/more_details.safetensors")
        pipe.fuse_lora(lora_scale=1.)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)
        return pipe

    def __call__(self, *args, **kwargs):
        return self.pipe(*args, **kwargs)

class LazyRealESRGAN:
    def __init__(self, device, scale):
        self.device = device
        self.scale = scale
        self.model = None

    def load_model(self):
        if self.model is None:
            self.model = RealESRGAN(self.device, scale=self.scale)
            self.model.load_weights(f'models/upscalers/RealESRGAN_x{self.scale}.pth', download=False)
    def predict(self, img):
        self.load_model()
        return self.model.predict(img)

lazy_realesrgan_x2 = LazyRealESRGAN(device, scale=2)
lazy_realesrgan_x4 = LazyRealESRGAN(device, scale=4)

@timer_func
def resize_and_upscale(input_image, resolution):
    scale = 2 if resolution <= 2048 else 4
    input_image = input_image.convert("RGB")
    W, H = input_image.size
    k = float(resolution) / min(H, W)
    H = int(round(H * k / 64.0)) * 64
    W = int(round(W * k / 64.0)) * 64
    img = input_image.resize((W, H), resample=Image.LANCZOS)
    if scale == 2:
        img = lazy_realesrgan_x2.predict(img)
    else:
        img = lazy_realesrgan_x4.predict(img)
    return img

@timer_func
def create_hdr_effect(original_image, hdr):
    if hdr == 0:
        return original_image
    cv_original = cv2.cvtColor(np.array(original_image), cv2.COLOR_RGB2BGR)
    factors = [1.0 - 0.9 * hdr, 1.0 - 0.7 * hdr, 1.0 - 0.45 * hdr,
               1.0 - 0.25 * hdr, 1.0, 1.0 + 0.2 * hdr,
               1.0 + 0.4 * hdr, 1.0 + 0.6 * hdr, 1.0 + 0.8 * hdr]
    images = [cv2.convertScaleAbs(cv_original, alpha=factor) for factor in factors]
    merge_mertens = cv2.createMergeMertens()
    hdr_image = merge_mertens.process(images)
    hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8')
    return Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))

lazy_pipe = LazyLoadPipeline()
lazy_pipe.load()

def prepare_image(input_image, resolution, hdr):
    condition_image = resize_and_upscale(input_image, resolution)
    condition_image = create_hdr_effect(condition_image, hdr)
    return condition_image

@spaces.GPU(duration=170)
@timer_func
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
    print("Starting image processing...")
    torch.cuda.empty_cache()
    
    condition_image = prepare_image(input_image, resolution, hdr)
    
    prompt = "masterpiece, best quality, highres"
    negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
    
    options = {
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "image": condition_image,
        "control_image": condition_image,
        "width": condition_image.size[0],
        "height": condition_image.size[1],
        "strength": strength,
        "num_inference_steps": num_inference_steps,
        "guidance_scale": guidance_scale,
        "generator": torch.Generator(device=device).manual_seed(0),
    }
    
    print("Running inference...")
    result = lazy_pipe(**options).images[0]
    print("Image processing completed successfully")
    
    # Convert input_image and result to numpy arrays
    input_array = np.array(input_image)
    result_array = np.array(result)
    
    return [input_array, result_array]

title = """<h1 align="center">Image Upscaler with Tile Controlnet</h1>
<p align="center">The main ideas come from</p>
<p><center>
<a href="https://github.com/philz1337x/clarity-upscaler" target="_blank">[philz1337x]</a>
<a href="https://github.com/BatouResearch/controlnet-tile-upscale" target="_blank">[Pau-Lozano]</a>
</center></p>
"""

with gr.Blocks() as demo:
    gr.HTML(title)
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil", label="Input Image")
            run_button = gr.Button("Enhance Image")
        with gr.Column():
            output_slider = ImageSlider(label="Before / After", type="numpy")
    with gr.Accordion("Advanced Options", open=False):
        resolution = gr.Slider(minimum=256, maximum=2048, value=512, step=256, label="Resolution")
        num_inference_steps = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Number of Inference Steps")
        strength = gr.Slider(minimum=0, maximum=1, value=0.4, step=0.01, label="Strength")
        hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect")
        guidance_scale = gr.Slider(minimum=0, maximum=20, value=3, step=0.5, label="Guidance Scale")

    run_button.click(fn=gradio_process_image, 
                     inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale],
                     outputs=output_slider)

    # Add examples with all required inputs
    gr.Examples(
        examples=[
            ["image1.jpg", 512, 20, 0.4, 0, 3],
            ["image2.png", 512, 20, 0.4, 0, 3],
            ["image3.png", 512, 20, 0.4, 0, 3],
        ],
        inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale],
        outputs=output_slider,
        fn=gradio_process_image,
        # cache_examples=True,
    )

demo.launch(share=True)