File size: 5,483 Bytes
2f036ac
 
 
 
 
 
 
 
 
 
 
 
dd222de
2f036ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbd5849
 
 
 
 
 
 
 
 
 
 
2f036ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd222de
9f94b8d
dd222de
 
 
 
 
 
 
9f94b8d
dd222de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f036ac
d2d7dfc
 
bcefad1
d2d7dfc
 
 
 
 
 
 
 
bcefad1
 
d2d7dfc
 
 
097b2fe
d2d7dfc
 
 
 
097b2fe
d2d7dfc
1db78e3
d2d7dfc
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from openai import AsyncAssistantEventHandler
from openai import AsyncOpenAI
import gradio as gr
import asyncio
import os

# set the keys
client = AsyncOpenAI(
  api_key=os.getenv("OPENAI_API_KEY")
)

assistantID = os.getenv("OPENAI_ASSISTANT_ID")
mypassword = os.getenv("RTL_PASSWORD")

class EventHandler(AsyncAssistantEventHandler):
    def __init__(self) -> None:
        super().__init__()
        self.response_text = ""

    async def on_text_created(self, text) -> None:
        self.response_text += str(text)

    async def on_text_delta(self, delta, snapshot):
        self.response_text += str(delta.value)

    async def on_text_done(self, text):
        pass

    async def on_tool_call_created(self, tool_call):
        self.response_text += f"\n[Tool Call]: {str(tool_call.type)}\n"

    async def on_tool_call_delta(self, delta, snapshot):
        if snapshot.id != getattr(self, "current_tool_call", None):
            self.current_tool_call = snapshot.id
            self.response_text += f"\n[Tool Call Delta]: {str(delta.type)}\n"

        if delta.type == 'code_interpreter':
            if delta.code_interpreter.input:
                self.response_text += str(delta.code_interpreter.input)
            if delta.code_interpreter.outputs:
                self.response_text += "\n\n[Output]:\n"
                for output in delta.code_interpreter.outputs:
                    if output.type == "logs":
                        self.response_text += f"\n{str(output.logs)}"

    async def on_tool_call_done(self, text):
        pass

# Initialize session variables
session_data = {"assistant_id": assistantID, "thread_id": None}

async def initialize_thread():
    # Create a Thread
    thread = await client.beta.threads.create()
    # Store thread ID in session_data for later use
    session_data["thread_id"] = thread.id

async def generate_response(user_input):
    if user_input == "":
        yield "Schreif eng Fro als Input"
    else:
        assistant_id = session_data["assistant_id"]
        thread_id = session_data["thread_id"]

        # Add a Message to the Thread
        oai_message = await client.beta.threads.messages.create(
            thread_id=thread_id,
            role="user",
            content=user_input
    )

    # Create and Stream a Run
    event_handler = EventHandler()

    async with client.beta.threads.runs.stream(
        thread_id=thread_id,
        assistant_id=assistant_id,
        instructions="Please assist the user with their query.",
        event_handler=event_handler,
    ) as stream:
        # Yield incremental updates
        async for _ in stream:
            await asyncio.sleep(0.1)  # Small delay to mimic streaming
            yield event_handler.response_text

# Gradio interface function (generator)
async def gradio_chat_interface(mode, password, user_input, example):
    if mode == "Beispiller":
        filename = example[-6:-2] + ".md"
        file = open("examples/" + filename, "r")
        output = file.read()
        yield output
    else:
        # check the password
        if password == "":
            yield "Ouni RTL-Passwuert fonctionnéiert d'Sich net !"
        elif password != mypassword:
            yield "Gitt dat richtegt RTL-Passwuert an !"
        else:

            # Create a new event loop if none exists (or if we are in a new thread)
            try:
                loop = asyncio.get_running_loop()
            except RuntimeError:
                loop = asyncio.new_event_loop()
                asyncio.set_event_loop(loop)

            # Initialize the thread if not already done
            if session_data["thread_id"] is None:
                await initialize_thread()

            # Generate and yield responses
            async for response in generate_response(user_input):
                yield response

with gr.Blocks() as demo:
    with gr.Row():
        myTitle = gr.HTML("<h2 align=center>RTL Luxembourgish AI News Reader : Wat war lass am Land 🇱🇺 an op der Welt 🌎 ?</h2>")   
    with gr.Row():
        myDescription = gr.HTML("""
            <h3 align='center'>Wat fir een Thema interesséiert Iech ?</h3>
            <p align='center'>🐶 🏃🏻‍♂️ 🌗 🍇 🌈 🍽️ 🏆 🚘 ✈️ 🩺 </p>
            <p align='center' bgcolor="Moccasin">Stellt är Froen op Lëtzebuergesch, oder an enger anerer Sprooch !</p>
            """            
        )
    with gr.Row():
        mode = gr.Radio(choices=["Sichen", "Beispiller"], label = "D'Beispiller fonktionnéieren ouni Passwuert !", value = "Beispiller")
        pw = gr.Textbox(lines=1, label="Gitt dat richtegt RTL-Passwuert an :")
    with gr.Row():
            question = gr.Textbox(lines=3, label="Wat wëllt Der wëssen ?")
    with gr.Row():    
            examples = gr.Radio(["Wat war lass am Juni 2023 ?", "Wat ass gewosst iwwert de SREL ?", "Wat fir eng Katastroph war 2022 zu Lëtzebuerg ?", "Koumen an de leschte Jore gréisser Kriminalfäll viru Geriicht ?"], value="Wat ass gewosst iwwert de SREL ?" , label="Beispiller")
    with gr.Row():
        clear = gr.Button("Clear")
        submit = gr.Button("Submit")
    with gr.Row():
        mySubtitle = gr.HTML("<p align='center' bgcolor='Khaki'>Lëtzebuergesch RTL News :</p>")
    with gr.Row():
        myOutput = gr.Markdown(label="Äntwert vum OpenAI File-Search Assistent :")

    submit.click(fn = gradio_chat_interface, inputs=[mode, pw, question, examples], outputs = myOutput)
demo.launch()