Spaces:
Running
Running
File size: 5,483 Bytes
2f036ac dd222de 2f036ac bbd5849 2f036ac dd222de 9f94b8d dd222de 9f94b8d dd222de 2f036ac d2d7dfc bcefad1 d2d7dfc bcefad1 d2d7dfc 097b2fe d2d7dfc 097b2fe d2d7dfc 1db78e3 d2d7dfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
from openai import AsyncAssistantEventHandler
from openai import AsyncOpenAI
import gradio as gr
import asyncio
import os
# set the keys
client = AsyncOpenAI(
api_key=os.getenv("OPENAI_API_KEY")
)
assistantID = os.getenv("OPENAI_ASSISTANT_ID")
mypassword = os.getenv("RTL_PASSWORD")
class EventHandler(AsyncAssistantEventHandler):
def __init__(self) -> None:
super().__init__()
self.response_text = ""
async def on_text_created(self, text) -> None:
self.response_text += str(text)
async def on_text_delta(self, delta, snapshot):
self.response_text += str(delta.value)
async def on_text_done(self, text):
pass
async def on_tool_call_created(self, tool_call):
self.response_text += f"\n[Tool Call]: {str(tool_call.type)}\n"
async def on_tool_call_delta(self, delta, snapshot):
if snapshot.id != getattr(self, "current_tool_call", None):
self.current_tool_call = snapshot.id
self.response_text += f"\n[Tool Call Delta]: {str(delta.type)}\n"
if delta.type == 'code_interpreter':
if delta.code_interpreter.input:
self.response_text += str(delta.code_interpreter.input)
if delta.code_interpreter.outputs:
self.response_text += "\n\n[Output]:\n"
for output in delta.code_interpreter.outputs:
if output.type == "logs":
self.response_text += f"\n{str(output.logs)}"
async def on_tool_call_done(self, text):
pass
# Initialize session variables
session_data = {"assistant_id": assistantID, "thread_id": None}
async def initialize_thread():
# Create a Thread
thread = await client.beta.threads.create()
# Store thread ID in session_data for later use
session_data["thread_id"] = thread.id
async def generate_response(user_input):
if user_input == "":
yield "Schreif eng Fro als Input"
else:
assistant_id = session_data["assistant_id"]
thread_id = session_data["thread_id"]
# Add a Message to the Thread
oai_message = await client.beta.threads.messages.create(
thread_id=thread_id,
role="user",
content=user_input
)
# Create and Stream a Run
event_handler = EventHandler()
async with client.beta.threads.runs.stream(
thread_id=thread_id,
assistant_id=assistant_id,
instructions="Please assist the user with their query.",
event_handler=event_handler,
) as stream:
# Yield incremental updates
async for _ in stream:
await asyncio.sleep(0.1) # Small delay to mimic streaming
yield event_handler.response_text
# Gradio interface function (generator)
async def gradio_chat_interface(mode, password, user_input, example):
if mode == "Beispiller":
filename = example[-6:-2] + ".md"
file = open("examples/" + filename, "r")
output = file.read()
yield output
else:
# check the password
if password == "":
yield "Ouni RTL-Passwuert fonctionnéiert d'Sich net !"
elif password != mypassword:
yield "Gitt dat richtegt RTL-Passwuert an !"
else:
# Create a new event loop if none exists (or if we are in a new thread)
try:
loop = asyncio.get_running_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Initialize the thread if not already done
if session_data["thread_id"] is None:
await initialize_thread()
# Generate and yield responses
async for response in generate_response(user_input):
yield response
with gr.Blocks() as demo:
with gr.Row():
myTitle = gr.HTML("<h2 align=center>RTL Luxembourgish AI News Reader : Wat war lass am Land 🇱🇺 an op der Welt 🌎 ?</h2>")
with gr.Row():
myDescription = gr.HTML("""
<h3 align='center'>Wat fir een Thema interesséiert Iech ?</h3>
<p align='center'>🐶 🏃🏻♂️ 🌗 🍇 🌈 🍽️ 🏆 🚘 ✈️ 🩺 </p>
<p align='center' bgcolor="Moccasin">Stellt är Froen op Lëtzebuergesch, oder an enger anerer Sprooch !</p>
"""
)
with gr.Row():
mode = gr.Radio(choices=["Sichen", "Beispiller"], label = "D'Beispiller fonktionnéieren ouni Passwuert !", value = "Beispiller")
pw = gr.Textbox(lines=1, label="Gitt dat richtegt RTL-Passwuert an :")
with gr.Row():
question = gr.Textbox(lines=3, label="Wat wëllt Der wëssen ?")
with gr.Row():
examples = gr.Radio(["Wat war lass am Juni 2023 ?", "Wat ass gewosst iwwert de SREL ?", "Wat fir eng Katastroph war 2022 zu Lëtzebuerg ?", "Koumen an de leschte Jore gréisser Kriminalfäll viru Geriicht ?"], value="Wat ass gewosst iwwert de SREL ?" , label="Beispiller")
with gr.Row():
clear = gr.Button("Clear")
submit = gr.Button("Submit")
with gr.Row():
mySubtitle = gr.HTML("<p align='center' bgcolor='Khaki'>Lëtzebuergesch RTL News :</p>")
with gr.Row():
myOutput = gr.Markdown(label="Äntwert vum OpenAI File-Search Assistent :")
submit.click(fn = gradio_chat_interface, inputs=[mode, pw, question, examples], outputs = myOutput)
demo.launch() |