Spaces:
Runtime error
Runtime error
Ruchi Toshniwal
commited on
Commit
โข
f031eb7
1
Parent(s):
1cfbd32
first commit
Browse files- app.py +80 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import packages
|
2 |
+
import streamlit as st
|
3 |
+
import altair as alt
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
import joblib
|
7 |
+
from transformers import pipeline
|
8 |
+
|
9 |
+
# Load pipeline
|
10 |
+
pipe_lr = joblib.load(open("emotion_detector_pipe_lr.pkl","rb"))
|
11 |
+
emoroberta_emotion_classifier = pipeline(
|
12 |
+
"text-classification", model="arpanghoshal/EmoRoBERTa", return_all_scores=True
|
13 |
+
)
|
14 |
+
|
15 |
+
# Emojis
|
16 |
+
emotions_emoji_dict = {"anger":"๐ ","disgust":"๐คฎ", "fear":"๐จ๐ฑ", "joy":"๐ค", "neutral":"๐", "sadness":"๐", "shame":"๐ณ", "surprise":"๐ฎ"}
|
17 |
+
|
18 |
+
# Functions
|
19 |
+
def predict_emotions(text):
|
20 |
+
result = pipe_lr.predict([text])
|
21 |
+
return result[0]
|
22 |
+
|
23 |
+
def get_prediction_proba(text):
|
24 |
+
result = pipe_lr.predict_proba([text])
|
25 |
+
return result
|
26 |
+
|
27 |
+
def predict_emotions_and_score_emoroberta(text):
|
28 |
+
emotionlabel = emoroberta_emotion_classifier(text)
|
29 |
+
emotion_dataframe = pd.DataFrame.from_records(emotionlabel[0]).sort_values(by=["score"], ascending=False)
|
30 |
+
emotion = emotion_dataframe.iloc[0, 0]
|
31 |
+
score = emotion_dataframe.iloc[0, 1]
|
32 |
+
return emotion_dataframe, emotion, score
|
33 |
+
|
34 |
+
def main():
|
35 |
+
st.title("Emotion Detection App")
|
36 |
+
with st.form(key='emotion_detection_form'):
|
37 |
+
raw_text = st.text_area("Type here")
|
38 |
+
submit_text = st.form_submit_button(label = 'Submit')
|
39 |
+
st.subheader("Predictions from LR model trained on labeled data (8 emotions)")
|
40 |
+
if submit_text:
|
41 |
+
col1,col2 = st.columns(2)
|
42 |
+
prediction = predict_emotions(raw_text)
|
43 |
+
prediction_probability = get_prediction_proba(raw_text)
|
44 |
+
with col1:
|
45 |
+
st.success("Original Text")
|
46 |
+
st.write(raw_text)
|
47 |
+
st.success("Emotion")
|
48 |
+
emoji_icon = emotions_emoji_dict[prediction]
|
49 |
+
st.write("{} {}".format(prediction,emoji_icon))
|
50 |
+
st.success("Emotion Score")
|
51 |
+
st.write("{:.4f}".format(np.max(prediction_probability)))
|
52 |
+
|
53 |
+
with col2:
|
54 |
+
st.success("Prediction Probability")
|
55 |
+
proba_df = pd.DataFrame(prediction_probability,columns = pipe_lr.classes_)
|
56 |
+
proba_df_clean = proba_df.T.reset_index()
|
57 |
+
proba_df_clean.columns = ["emotions","probability"]
|
58 |
+
fig = alt.Chart(proba_df_clean).mark_bar().encode(y=alt.Y('emotions', sort='-x'),x='probability',color='emotions')
|
59 |
+
st.altair_chart(fig,use_container_width=True)
|
60 |
+
|
61 |
+
st.markdown("***")
|
62 |
+
|
63 |
+
st.subheader("Predictions from EmoRoBERTa - BERT based pre-trained model (28 emotions)")
|
64 |
+
|
65 |
+
col3,col4 = st.columns(2)
|
66 |
+
emotion_dataframe_emoroberta, predicted_emotion_emoroberta, prediction_probability_emoroberta = predict_emotions_and_score_emoroberta(raw_text)
|
67 |
+
with col3:
|
68 |
+
st.success("Emotion")
|
69 |
+
st.write(predicted_emotion_emoroberta)
|
70 |
+
|
71 |
+
with col4:
|
72 |
+
st.success("Emotion Score")
|
73 |
+
st.write("{:.4f}".format(np.max(prediction_probability_emoroberta)))
|
74 |
+
st.success("Prediction Probability")
|
75 |
+
emotion_dataframe_emoroberta.columns = ["emotions","probability"]
|
76 |
+
fig = alt.Chart(emotion_dataframe_emoroberta).mark_bar().encode(y=alt.Y('emotions', sort='-x'),x='probability',color='emotions')
|
77 |
+
st.altair_chart(fig,use_container_width=True)
|
78 |
+
|
79 |
+
if __name__ == '__main__':
|
80 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
altair
|
3 |
+
pandas
|
4 |
+
numpy
|
5 |
+
joblib
|
6 |
+
transformers
|