File size: 1,829 Bytes
4e02d56
6e25633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e02d56
6e25633
4e02d56
 
 
 
6e25633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: other
tags:
- vision
- image-segmentation
datasets:
- oxford_pets
widget:
- src: >-
    https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg
  example_title: Dog
- src: >-
    https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000002.jpg
  example_title: Cat
library_name: keras


title: Segmentation
sdk: gradio
sdk_version: 3.44.4
app_file: app.py
pinned: false
---

# sayakpaul/mit-b0-finetuned-pets

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the [Oxford Pets](https://www.robots.ox.ac.uk/~vgg/data/pets/) dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1481
- Validation Loss: 0.1962
- Epoch: 9

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 6e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.2821     | 0.2146          | 0     |
| 0.2090     | 0.1983          | 1     |
| 0.1920     | 0.2002          | 2     |
| 0.1805     | 0.1868          | 3     |
| 0.1716     | 0.1920          | 4     |
| 0.1651     | 0.1850          | 5     |
| 0.1537     | 0.1943          | 6     |
| 0.1570     | 0.1842          | 7     |
| 0.1462     | 0.1833          | 8     |
| 0.1481     | 0.1962          | 9     |


### Framework versions

- Transformers 4.25.1
- TensorFlow 2.10.1
- Tokenizers 0.13.2