File size: 1,829 Bytes
4e02d56 6e25633 4e02d56 6e25633 4e02d56 6e25633 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: other
tags:
- vision
- image-segmentation
datasets:
- oxford_pets
widget:
- src: >-
https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg
example_title: Dog
- src: >-
https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000002.jpg
example_title: Cat
library_name: keras
title: Segmentation
sdk: gradio
sdk_version: 3.44.4
app_file: app.py
pinned: false
---
# sayakpaul/mit-b0-finetuned-pets
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the [Oxford Pets](https://www.robots.ox.ac.uk/~vgg/data/pets/) dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1481
- Validation Loss: 0.1962
- Epoch: 9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 6e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.2821 | 0.2146 | 0 |
| 0.2090 | 0.1983 | 1 |
| 0.1920 | 0.2002 | 2 |
| 0.1805 | 0.1868 | 3 |
| 0.1716 | 0.1920 | 4 |
| 0.1651 | 0.1850 | 5 |
| 0.1537 | 0.1943 | 6 |
| 0.1570 | 0.1842 | 7 |
| 0.1462 | 0.1833 | 8 |
| 0.1481 | 0.1962 | 9 |
### Framework versions
- Transformers 4.25.1
- TensorFlow 2.10.1
- Tokenizers 0.13.2 |