bite_gradio / src /combined_model /model_shape_v7_withref_withgraphcnn.py
Nadine Rueegg
enable skipping ttopt and add more example images
eb37a1f
import pickle as pkl
import numpy as np
import torchvision.models as models
from torchvision import transforms
import torch
from torch import nn
from torch.nn.parameter import Parameter
from kornia.geometry.subpix import dsnt # kornia 0.4.0
import os
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..'))
from stacked_hourglass.utils.evaluation import get_preds_soft
from stacked_hourglass import hg1, hg2, hg8
from lifting_to_3d.linear_model import LinearModelComplete, LinearModel
from lifting_to_3d.inn_model_for_shape import INNForShape
from lifting_to_3d.utils.geometry_utils import rot6d_to_rotmat, rotmat_to_rot6d
from smal_pytorch.smal_model.smal_torch_new import SMAL
from smal_pytorch.renderer.differentiable_renderer import SilhRenderer
from bps_2d.bps_for_segmentation import SegBPS
# from configs.SMAL_configs import SMAL_MODEL_DATA_PATH as SHAPE_PRIOR
from configs.SMAL_configs import SMAL_MODEL_CONFIG
from configs.SMAL_configs import MEAN_DOG_BONE_LENGTHS_NO_RED, VERTEX_IDS_TAIL
# NEW: for graph cnn part
from smal_pytorch.smal_model.smal_torch_new import SMAL
from configs.SMAL_configs import SMAL_MODEL_CONFIG
from graph_networks.graphcmr.utils_mesh import Mesh
from graph_networks.graphcmr.graph_cnn_groundcontact_multistage import GraphCNNMS
class SmallLinear(nn.Module):
def __init__(self, input_size=64, output_size=30, linear_size=128):
super(SmallLinear, self).__init__()
self.relu = nn.ReLU(inplace=True)
self.w1 = nn.Linear(input_size, linear_size)
self.w2 = nn.Linear(linear_size, linear_size)
self.w3 = nn.Linear(linear_size, output_size)
def forward(self, x):
# pre-processing
y = self.w1(x)
y = self.relu(y)
y = self.w2(y)
y = self.relu(y)
y = self.w3(y)
return y
class MyConv1d(nn.Module):
def __init__(self, input_size=37, output_size=30, start=True):
super(MyConv1d, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.start = start
self.weight = Parameter(torch.ones((self.output_size)))
self.bias = Parameter(torch.zeros((self.output_size)))
def forward(self, x):
# pre-processing
if self.start:
y = x[:, :self.output_size]
else:
y = x[:, -self.output_size:]
y = y * self.weight[None, :] + self.bias[None, :]
return y
class ModelShapeAndBreed(nn.Module):
def __init__(self, smal_model_type, n_betas=10, n_betas_limbs=13, n_breeds=121, n_z=512, structure_z_to_betas='default'):
super(ModelShapeAndBreed, self).__init__()
self.n_betas = n_betas
self.n_betas_limbs = n_betas_limbs # n_betas_logscale
self.n_breeds = n_breeds
self.structure_z_to_betas = structure_z_to_betas
if self.structure_z_to_betas == '1dconv':
if not (n_z == self.n_betas+self.n_betas_limbs):
raise ValueError
self.smal_model_type = smal_model_type
# shape branch
self.resnet = models.resnet34(pretrained=False)
# replace the first layer
n_in = 3 + 1
self.resnet.conv1 = nn.Conv2d(n_in, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
# replace the last layer
self.resnet.fc = nn.Linear(512, n_z)
# softmax
self.soft_max = torch.nn.Softmax(dim=1)
# fc network (and other versions) to connect z with betas
p_dropout = 0.2
if self.structure_z_to_betas == 'default':
self.linear_betas = LinearModel(linear_size=1024,
num_stage=1,
p_dropout=p_dropout,
input_size=n_z,
output_size=self.n_betas)
self.linear_betas_limbs = LinearModel(linear_size=1024,
num_stage=1,
p_dropout=p_dropout,
input_size=n_z,
output_size=self.n_betas_limbs)
elif self.structure_z_to_betas == 'lin':
self.linear_betas = nn.Linear(n_z, self.n_betas)
self.linear_betas_limbs = nn.Linear(n_z, self.n_betas_limbs)
elif self.structure_z_to_betas == 'fc_0':
self.linear_betas = SmallLinear(linear_size=128, # 1024,
input_size=n_z,
output_size=self.n_betas)
self.linear_betas_limbs = SmallLinear(linear_size=128, # 1024,
input_size=n_z,
output_size=self.n_betas_limbs)
elif structure_z_to_betas == 'fc_1':
self.linear_betas = LinearModel(linear_size=64, # 1024,
num_stage=1,
p_dropout=0,
input_size=n_z,
output_size=self.n_betas)
self.linear_betas_limbs = LinearModel(linear_size=64, # 1024,
num_stage=1,
p_dropout=0,
input_size=n_z,
output_size=self.n_betas_limbs)
elif self.structure_z_to_betas == '1dconv':
self.linear_betas = MyConv1d(n_z, self.n_betas, start=True)
self.linear_betas_limbs = MyConv1d(n_z, self.n_betas_limbs, start=False)
elif self.structure_z_to_betas == 'inn':
self.linear_betas_and_betas_limbs = INNForShape(self.n_betas, self.n_betas_limbs, betas_scale=1.0, betas_limbs_scale=1.0)
else:
raise ValueError
# network to connect latent shape vector z with dog breed classification
self.linear_breeds = LinearModel(linear_size=1024, # 1024,
num_stage=1,
p_dropout=p_dropout,
input_size=n_z,
output_size=self.n_breeds)
# shape multiplicator
self.shape_multiplicator_np = np.ones(self.n_betas)
with open(SMAL_MODEL_CONFIG[self.smal_model_type]['smal_model_data_path'], 'rb') as file:
u = pkl._Unpickler(file)
u.encoding = 'latin1'
res = u.load()
# shape predictions are centered around the mean dog of our dog model
if 'dog_cluster_mean' in res.keys():
self.betas_mean_np = res['dog_cluster_mean']
else:
assert res['cluster_means'].shape[0]==1
self.betas_mean_np = res['cluster_means'][0, :]
def forward(self, img, seg_raw=None, seg_prep=None):
# img is the network input image
# seg_raw is before softmax and subtracting 0.5
# seg_prep would be the prepared_segmentation
if seg_prep is None:
seg_prep = self.soft_max(seg_raw)[:, 1:2, :, :] - 0.5
input_img_and_seg = torch.cat((img, seg_prep), axis=1)
res_output = self.resnet(input_img_and_seg)
dog_breed_output = self.linear_breeds(res_output)
if self.structure_z_to_betas == 'inn':
shape_output_orig, shape_limbs_output_orig = self.linear_betas_and_betas_limbs(res_output)
else:
shape_output_orig = self.linear_betas(res_output) * 0.1
betas_mean = torch.tensor(self.betas_mean_np).float().to(img.device)
shape_output = shape_output_orig + betas_mean[None, 0:self.n_betas]
shape_limbs_output_orig = self.linear_betas_limbs(res_output)
shape_limbs_output = shape_limbs_output_orig * 0.1
output_dict = {'z': res_output,
'breeds': dog_breed_output,
'betas': shape_output_orig,
'betas_limbs': shape_limbs_output_orig}
return output_dict
class LearnableShapedirs(nn.Module):
def __init__(self, sym_ids_dict, shapedirs_init, n_betas, n_betas_fixed=10):
super(LearnableShapedirs, self).__init__()
# shapedirs_init = self.smal.shapedirs.detach()
self.n_betas = n_betas
self.n_betas_fixed = n_betas_fixed
self.sym_ids_dict = sym_ids_dict
sym_left_ids = self.sym_ids_dict['left']
sym_right_ids = self.sym_ids_dict['right']
sym_center_ids = self.sym_ids_dict['center']
self.n_center = sym_center_ids.shape[0]
self.n_left = sym_left_ids.shape[0]
self.n_sd = self.n_betas - self.n_betas_fixed # number of learnable shapedirs
# get indices to go from half_shapedirs to shapedirs
inds_back = np.zeros((3889))
for ind in range(0, sym_center_ids.shape[0]):
ind_in_forward = sym_center_ids[ind]
inds_back[ind_in_forward] = ind
for ind in range(0, sym_left_ids.shape[0]):
ind_in_forward = sym_left_ids[ind]
inds_back[ind_in_forward] = sym_center_ids.shape[0] + ind
for ind in range(0, sym_right_ids.shape[0]):
ind_in_forward = sym_right_ids[ind]
inds_back[ind_in_forward] = sym_center_ids.shape[0] + sym_left_ids.shape[0] + ind
self.register_buffer('inds_back_torch', torch.Tensor(inds_back).long())
# self.smal.shapedirs: (51, 11667)
# shapedirs: (3889, 3, n_sd)
# shapedirs_half: (2012, 3, n_sd)
sd = shapedirs_init[:self.n_betas, :].permute((1, 0)).reshape((-1, 3, self.n_betas))
self.register_buffer('sd', sd)
sd_center = sd[sym_center_ids, :, self.n_betas_fixed:]
sd_left = sd[sym_left_ids, :, self.n_betas_fixed:]
self.register_parameter('learnable_half_shapedirs_c0', torch.nn.Parameter(sd_center[:, 0, :].detach()))
self.register_parameter('learnable_half_shapedirs_c2', torch.nn.Parameter(sd_center[:, 2, :].detach()))
self.register_parameter('learnable_half_shapedirs_l0', torch.nn.Parameter(sd_left[:, 0, :].detach()))
self.register_parameter('learnable_half_shapedirs_l1', torch.nn.Parameter(sd_left[:, 1, :].detach()))
self.register_parameter('learnable_half_shapedirs_l2', torch.nn.Parameter(sd_left[:, 2, :].detach()))
def forward(self):
device = self.learnable_half_shapedirs_c0.device
half_shapedirs_center = torch.stack((self.learnable_half_shapedirs_c0, \
torch.zeros((self.n_center, self.n_sd)).to(device), \
self.learnable_half_shapedirs_c2), axis=1)
half_shapedirs_left = torch.stack((self.learnable_half_shapedirs_l0, \
self.learnable_half_shapedirs_l1, \
self.learnable_half_shapedirs_l2), axis=1)
half_shapedirs_right = torch.stack((self.learnable_half_shapedirs_l0, \
- self.learnable_half_shapedirs_l1, \
self.learnable_half_shapedirs_l2), axis=1)
half_shapedirs_tot = torch.cat((half_shapedirs_center, half_shapedirs_left, half_shapedirs_right))
shapedirs = torch.index_select(half_shapedirs_tot, dim=0, index=self.inds_back_torch)
shapedirs_complete = torch.cat((self.sd[:, :, :self.n_betas_fixed], shapedirs), axis=2) # (3889, 3, n_sd)
shapedirs_complete_prepared = torch.cat((self.sd[:, :, :10], shapedirs), axis=2).reshape((-1, 30)).permute((1, 0)) # (n_sd, 11667)
return shapedirs_complete, shapedirs_complete_prepared
class ModelRefinement(nn.Module):
def __init__(self, n_betas=10, n_betas_limbs=7, n_breeds=121, n_keyp=20, n_joints=35, ref_net_type='add', graphcnn_type='inexistent', isflat_type='inexistent', shaperef_type='inexistent'):
super(ModelRefinement, self).__init__()
self.n_betas = n_betas
self.n_betas_limbs = n_betas_limbs
self.n_breeds = n_breeds
self.n_keyp = n_keyp
self.n_joints = n_joints
self.n_out_seg = 256
self.n_out_keyp = 256
self.n_out_enc = 256
self.linear_size = 1024
self.linear_size_small = 128
self.ref_net_type = ref_net_type
self.graphcnn_type = graphcnn_type
self.isflat_type = isflat_type
self.shaperef_type = shaperef_type
p_dropout = 0.2
# --- segmentation encoder
if self.ref_net_type in ['multrot_res34', 'multrot01all_res34']:
self.ref_res = models.resnet34(pretrained=False)
else:
self.ref_res = models.resnet18(pretrained=False)
# replace the first layer
self.ref_res.conv1 = nn.Conv2d(2, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
# replace the last layer
self.ref_res.fc = nn.Linear(512, self.n_out_seg)
# softmax
self.soft_max = torch.nn.Softmax(dim=1)
# --- keypoint encoder
self.linear_keyp = LinearModel(linear_size=self.linear_size,
num_stage=1,
p_dropout=p_dropout,
input_size=n_keyp*2*2,
output_size=self.n_out_keyp)
# --- decoder
self.linear_combined = LinearModel(linear_size=self.linear_size,
num_stage=1,
p_dropout=p_dropout,
input_size=self.n_out_seg+self.n_out_keyp,
output_size=self.n_out_enc)
# output info
pose = {'name': 'pose', 'n': self.n_joints*6, 'out_shape':[self.n_joints, 6]}
trans = {'name': 'trans_notnorm', 'n': 3}
cam = {'name': 'flength_notnorm', 'n': 1}
betas = {'name': 'betas', 'n': self.n_betas}
betas_limbs = {'name': 'betas_limbs', 'n': self.n_betas_limbs}
if self.shaperef_type=='inexistent':
self.output_info = [pose, trans, cam] # , betas]
else:
self.output_info = [pose, trans, cam, betas, betas_limbs]
# output branches
self.output_info_linear_models = []
for ind_el, element in enumerate(self.output_info):
n_in = self.n_out_enc + element['n']
self.output_info_linear_models.append(LinearModel(linear_size=self.linear_size,
num_stage=1,
p_dropout=p_dropout,
input_size=n_in,
output_size=element['n']))
element['linear_model_index'] = ind_el
self.output_info_linear_models = nn.ModuleList(self.output_info_linear_models)
# new: predict if the ground is flat
if not self.isflat_type=='inexistent':
self.linear_isflat = LinearModel(linear_size=self.linear_size_small,
num_stage=1,
p_dropout=p_dropout,
input_size=self.n_out_enc,
output_size=2) # answer is just yes or no
# new for ground contact prediction: graph cnn
if not self.graphcnn_type=='inexistent':
num_downsampling = 1
smal_model_type = '39dogs_norm'
smal = SMAL(smal_model_type=smal_model_type, template_name='neutral')
ROOT_smal_downsampling = os.path.join(os.path.dirname(__file__), './../../data/graphcmr_data/')
smal_downsampling_npz_name = 'mesh_downsampling_' + os.path.basename(SMAL_MODEL_CONFIG[smal_model_type]['smal_model_path']).replace('.pkl', '_template.npz')
smal_downsampling_npz_path = ROOT_smal_downsampling + smal_downsampling_npz_name # 'data/mesh_downsampling.npz'
self.my_custom_smal_dog_mesh = Mesh(filename=smal_downsampling_npz_path, num_downsampling=num_downsampling, nsize=1, body_model=smal) # , device=device)
# create GraphCNN
num_layers = 2 # <= len(my_custom_mesh._A)-1
n_resnet_out = self.n_out_enc # 256
num_channels = 256 # 512
self.graph_cnn = GraphCNNMS(mesh=self.my_custom_smal_dog_mesh,
num_downsample = num_downsampling,
num_layers = num_layers,
n_resnet_out = n_resnet_out,
num_channels = num_channels) # .to(device)
def forward(self, keyp_sh, keyp_pred, in_pose_3x3, in_trans_notnorm, in_cam_notnorm, in_betas, in_betas_limbs, seg_pred_prep=None, seg_sh_raw=None, seg_sh_prep=None):
# img is the network input image
# seg_raw is before softmax and subtracting 0.5
# seg_prep would be the prepared_segmentation
batch_size = in_pose_3x3.shape[0]
device = in_pose_3x3.device
dtype = in_pose_3x3.dtype
# --- segmentation encoder
if seg_sh_prep is None:
seg_sh_prep = self.soft_max(seg_sh_raw)[:, 1:2, :, :] - 0.5 # class 1 is the dog
input_seg_conc = torch.cat((seg_sh_prep, seg_pred_prep), axis=1)
network_output_seg = self.ref_res(input_seg_conc)
# --- keypoint encoder
keyp_conc = torch.cat((keyp_sh.reshape((-1, keyp_sh.shape[1]*keyp_sh.shape[2])), keyp_pred.reshape((-1, keyp_sh.shape[1]*keyp_sh.shape[2]))), axis=1)
network_output_keyp = self.linear_keyp(keyp_conc)
# --- decoder
x = torch.cat((network_output_seg, network_output_keyp), axis=1)
y_comb = self.linear_combined(x)
in_pose_6d = rotmat_to_rot6d(in_pose_3x3.reshape((-1, 3, 3))).reshape((in_pose_3x3.shape[0], -1, 6))
in_dict = {'pose': in_pose_6d,
'trans_notnorm': in_trans_notnorm,
'flength_notnorm': in_cam_notnorm,
'betas': in_betas,
'betas_limbs': in_betas_limbs}
results = {}
for element in self.output_info:
# import pdb; pdb.set_trace()
linear_model = self.output_info_linear_models[element['linear_model_index']]
y = torch.cat((y_comb, in_dict[element['name']].reshape((-1, element['n']))), axis=1)
if 'out_shape' in element.keys():
if element['name'] == 'pose':
if self.ref_net_type in ['multrot', 'multrot01', 'multrot01all', 'multrotxx', 'multrot_res34', 'multrot01all_res34']: # if self.ref_net_type == 'multrot' or self.ref_net_type == 'multrot_res34':
# multiply the rotations with each other -> just predict a correction
# the correction should be initialized as identity
# res_pose_out = (linear_model(y)).reshape((-1, element['out_shape'][0], element['out_shape'][1])) + in_dict[element['name']]
identity_rot6d = torch.tensor(([1., 0., 0., 1., 0., 0.])).repeat((in_pose_3x3.shape[0]*in_pose_3x3.shape[1], 1)).to(device=device, dtype=dtype)
if self.ref_net_type in ['multrot01', 'multrot01all', 'multrot01all_res34']:
res_pose_out = identity_rot6d + 0.1*(linear_model(y)).reshape((-1, element['out_shape'][1]))
elif self.ref_net_type == 'multrotxx':
res_pose_out = identity_rot6d + 0.0*(linear_model(y)).reshape((-1, element['out_shape'][1]))
else:
res_pose_out = identity_rot6d + (linear_model(y)).reshape((-1, element['out_shape'][1]))
res_pose_rotmat = rot6d_to_rotmat(res_pose_out.reshape((-1, 6))) # (bs*35, 3, 3) .reshape((batch_size, -1, 3, 3))
res_tot_rotmat = torch.bmm(res_pose_rotmat.reshape((-1, 3, 3)), in_pose_3x3.reshape((-1, 3, 3))).reshape((batch_size, -1, 3, 3)) # (bs, 5, 3, 3)
results['pose_rotmat'] = res_tot_rotmat
elif self.ref_net_type == 'add':
res_6d = (linear_model(y)).reshape((-1, element['out_shape'][0], element['out_shape'][1])) + in_dict['pose']
results['pose_rotmat'] = rot6d_to_rotmat(res_6d.reshape((-1, 6))).reshape((batch_size, -1, 3, 3))
else:
raise ValueError
else:
if self.ref_net_type in ['multrot01all', 'multrot01all_res34']:
results[element['name']] = (0.1*linear_model(y)).reshape((-1, element['out_shape'][0], element['out_shape'][1])) + in_dict[element['name']]
else:
results[element['name']] = (linear_model(y)).reshape((-1, element['out_shape'][0], element['out_shape'][1])) + in_dict[element['name']]
else:
if self.ref_net_type in ['multrot01all', 'multrot01all_res34']:
results[element['name']] = 0.1*linear_model(y) + in_dict[element['name']]
else:
results[element['name']] = linear_model(y) + in_dict[element['name']]
# add prediction if ground is flat
if not self.isflat_type=='inexistent':
isflat = self.linear_isflat(y_comb)
results['isflat'] = isflat
# add graph cnn
if not self.graphcnn_type=='inexistent':
ground_contact_downsampled, ground_cntact_all_stages_output = self.graph_cnn(y_comb)
ground_contact = self.my_custom_smal_dog_mesh.upsample(ground_contact_downsampled.transpose(1,2))
results['vertexwise_ground_contact'] = ground_contact
return results
class ModelImageToBreed(nn.Module):
def __init__(self, smal_model_type, arch='hg8', n_joints=35, n_classes=20, n_partseg=15, n_keyp=20, n_bones=24, n_betas=10, n_betas_limbs=7, n_breeds=121, image_size=256, n_z=512, thr_keyp_sc=None, add_partseg=True):
super(ModelImageToBreed, self).__init__()
self.n_classes = n_classes
self.n_partseg = n_partseg
self.n_betas = n_betas
self.n_betas_limbs = n_betas_limbs
self.n_keyp = n_keyp
self.n_bones = n_bones
self.n_breeds = n_breeds
self.image_size = image_size
self.upsample_seg = True
self.threshold_scores = thr_keyp_sc
self.n_z = n_z
self.add_partseg = add_partseg
self.smal_model_type = smal_model_type
# ------------------------------ STACKED HOUR GLASS ------------------------------
if arch == 'hg8':
self.stacked_hourglass = hg8(pretrained=False, num_classes=self.n_classes, num_partseg=self.n_partseg, upsample_seg=self.upsample_seg, add_partseg=self.add_partseg)
else:
raise Exception('unrecognised model architecture: ' + arch)
# ------------------------------ SHAPE AND BREED MODEL ------------------------------
self.breed_model = ModelShapeAndBreed(smal_model_type=self.smal_model_type, n_betas=self.n_betas, n_betas_limbs=self.n_betas_limbs, n_breeds=self.n_breeds, n_z=self.n_z)
def forward(self, input_img, norm_dict=None, bone_lengths_prepared=None, betas=None):
batch_size = input_img.shape[0]
device = input_img.device
# ------------------------------ STACKED HOUR GLASS ------------------------------
hourglass_out_dict = self.stacked_hourglass(input_img)
last_seg = hourglass_out_dict['seg_final']
last_heatmap = hourglass_out_dict['out_list_kp'][-1]
# - prepare keypoints (from heatmap)
# normalize predictions -> from logits to probability distribution
# last_heatmap_norm = dsnt.spatial_softmax2d(last_heatmap, temperature=torch.tensor(1))
# keypoints = dsnt.spatial_expectation2d(last_heatmap_norm, normalized_coordinates=False) + 1 # (bs, 20, 2)
# keypoints_norm = dsnt.spatial_expectation2d(last_heatmap_norm, normalized_coordinates=True) # (bs, 20, 2)
keypoints_norm, scores = get_preds_soft(last_heatmap, return_maxval=True, norm_coords=True)
if self.threshold_scores is not None:
scores[scores>self.threshold_scores] = 1.0
scores[scores<=self.threshold_scores] = 0.0
# ------------------------------ SHAPE AND BREED MODEL ------------------------------
# breed_model takes as input the image as well as the predicted segmentation map
# -> we need to split up ModelImageTo3d, such that we can use the silhouette
resnet_output = self.breed_model(img=input_img, seg_raw=last_seg)
pred_breed = resnet_output['breeds'] # (bs, n_breeds)
pred_betas = resnet_output['betas']
pred_betas_limbs = resnet_output['betas_limbs']
small_output = {'keypoints_norm': keypoints_norm,
'keypoints_scores': scores}
small_output_reproj = {'betas': pred_betas,
'betas_limbs': pred_betas_limbs,
'dog_breed': pred_breed}
return small_output, None, small_output_reproj
class ModelImageTo3d_withshape_withproj(nn.Module):
def __init__(self, smal_model_type, smal_keyp_conf=None, arch='hg8', num_stage_comb=2, num_stage_heads=1, num_stage_heads_pose=1, trans_sep=False, n_joints=35, n_classes=20, n_partseg=15, n_keyp=20, n_bones=24, n_betas=10, n_betas_limbs=6, n_breeds=121, image_size=256, n_z=512, n_segbps=64*2, thr_keyp_sc=None, add_z_to_3d_input=True, add_segbps_to_3d_input=False, add_partseg=True, silh_no_tail=True, fix_flength=False, render_partseg=False, structure_z_to_betas='default', structure_pose_net='default', nf_version=None, ref_net_type='add', ref_detach_shape=True, graphcnn_type='inexistent', isflat_type='inexistent', shaperef_type='inexistent'):
super(ModelImageTo3d_withshape_withproj, self).__init__()
self.n_classes = n_classes
self.n_partseg = n_partseg
self.n_betas = n_betas
self.n_betas_limbs = n_betas_limbs
self.n_keyp = n_keyp
self.n_joints = n_joints
self.n_bones = n_bones
self.n_breeds = n_breeds
self.image_size = image_size
self.threshold_scores = thr_keyp_sc
self.upsample_seg = True
self.silh_no_tail = silh_no_tail
self.add_z_to_3d_input = add_z_to_3d_input
self.add_segbps_to_3d_input = add_segbps_to_3d_input
self.add_partseg = add_partseg
self.ref_net_type = ref_net_type
self.ref_detach_shape = ref_detach_shape
self.graphcnn_type = graphcnn_type
self.isflat_type = isflat_type
self.shaperef_type = shaperef_type
assert (not self.add_segbps_to_3d_input) or (not self.add_z_to_3d_input)
self.n_z = n_z
if add_segbps_to_3d_input:
self.n_segbps = n_segbps # 64
self.segbps_model = SegBPS()
else:
self.n_segbps = 0
self.fix_flength = fix_flength
self.render_partseg = render_partseg
self.structure_z_to_betas = structure_z_to_betas
self.structure_pose_net = structure_pose_net
assert self.structure_pose_net in ['default', 'vae', 'normflow']
self.nf_version = nf_version
self.smal_model_type = smal_model_type
assert (smal_keyp_conf is not None)
self.smal_keyp_conf = smal_keyp_conf
self.register_buffer('betas_zeros', torch.zeros((1, self.n_betas)))
self.register_buffer('mean_dog_bone_lengths', torch.tensor(MEAN_DOG_BONE_LENGTHS_NO_RED, dtype=torch.float32))
p_dropout = 0.2 # 0.5
# ------------------------------ SMAL MODEL ------------------------------
self.smal = SMAL(smal_model_type=self.smal_model_type, template_name='neutral')
print('SMAL model type: ' + self.smal.smal_model_type)
# New for rendering without tail
f_np = self.smal.faces.detach().cpu().numpy()
self.f_no_tail_np = f_np[np.isin(f_np[:,:], VERTEX_IDS_TAIL).sum(axis=1)==0, :]
# in theory we could optimize for improved shapedirs, but we do not do that
# -> would need to implement regularizations
# -> there are better ways than changing the shapedirs
self.model_learnable_shapedirs = LearnableShapedirs(self.smal.sym_ids_dict, self.smal.shapedirs.detach(), self.n_betas, 10)
# ------------------------------ STACKED HOUR GLASS ------------------------------
if arch == 'hg8':
self.stacked_hourglass = hg8(pretrained=False, num_classes=self.n_classes, num_partseg=self.n_partseg, upsample_seg=self.upsample_seg, add_partseg=self.add_partseg)
else:
raise Exception('unrecognised model architecture: ' + arch)
# ------------------------------ SHAPE AND BREED MODEL ------------------------------
self.breed_model = ModelShapeAndBreed(self.smal_model_type, n_betas=self.n_betas, n_betas_limbs=self.n_betas_limbs, n_breeds=self.n_breeds, n_z=self.n_z, structure_z_to_betas=self.structure_z_to_betas)
# ------------------------------ LINEAR 3D MODEL ------------------------------
# 3d model -> from image to 3d parameters {2d keypoints from heatmap, pose, trans, flength}
self.soft_max = torch.nn.Softmax(dim=1)
input_size = self.n_keyp*3 + self.n_bones
self.model_3d = LinearModelComplete(linear_size=1024,
num_stage_comb=num_stage_comb,
num_stage_heads=num_stage_heads,
num_stage_heads_pose=num_stage_heads_pose,
trans_sep=trans_sep,
p_dropout=p_dropout, # 0.5,
input_size=input_size,
intermediate_size=1024,
output_info=None,
n_joints=self.n_joints,
n_z=self.n_z,
add_z_to_3d_input=self.add_z_to_3d_input,
n_segbps=self.n_segbps,
add_segbps_to_3d_input=self.add_segbps_to_3d_input,
structure_pose_net=self.structure_pose_net,
nf_version = self.nf_version)
# ------------------------------ RENDERING ------------------------------
self.silh_renderer = SilhRenderer(image_size)
# ------------------------------ REFINEMENT -----------------------------
self.refinement_model = ModelRefinement(n_betas=self.n_betas, n_betas_limbs=self.n_betas_limbs, n_breeds=self.n_breeds, n_keyp=self.n_keyp, n_joints=self.n_joints, ref_net_type=self.ref_net_type, graphcnn_type=self.graphcnn_type, isflat_type=self.isflat_type, shaperef_type=self.shaperef_type)
def forward(self, input_img, norm_dict=None, bone_lengths_prepared=None, betas=None):
batch_size = input_img.shape[0]
device = input_img.device
# ------------------------------ STACKED HOUR GLASS ------------------------------
hourglass_out_dict = self.stacked_hourglass(input_img)
last_seg = hourglass_out_dict['seg_final']
last_heatmap = hourglass_out_dict['out_list_kp'][-1]
# - prepare keypoints (from heatmap)
# normalize predictions -> from logits to probability distribution
# last_heatmap_norm = dsnt.spatial_softmax2d(last_heatmap, temperature=torch.tensor(1))
# keypoints = dsnt.spatial_expectation2d(last_heatmap_norm, normalized_coordinates=False) + 1 # (bs, 20, 2)
# keypoints_norm = dsnt.spatial_expectation2d(last_heatmap_norm, normalized_coordinates=True) # (bs, 20, 2)
keypoints_norm, scores = get_preds_soft(last_heatmap, return_maxval=True, norm_coords=True)
if self.threshold_scores is not None:
scores[scores>self.threshold_scores] = 1.0
scores[scores<=self.threshold_scores] = 0.0
# ------------------------------ LEARNABLE SHAPE MODEL ------------------------------
# in our cvpr 2022 paper we do not change the shapedirs
# learnable_sd_complete has shape (3889, 3, n_sd)
# learnable_sd_complete_prepared has shape (n_sd, 11667)
learnable_sd_complete, learnable_sd_complete_prepared = self.model_learnable_shapedirs()
shapedirs_sel = learnable_sd_complete_prepared # None
# ------------------------------ SHAPE AND BREED MODEL ------------------------------
# breed_model takes as input the image as well as the predicted segmentation map
# -> we need to split up ModelImageTo3d, such that we can use the silhouette
resnet_output = self.breed_model(img=input_img, seg_raw=last_seg)
pred_breed = resnet_output['breeds'] # (bs, n_breeds)
pred_z = resnet_output['z']
# - prepare shape
pred_betas = resnet_output['betas']
pred_betas_limbs = resnet_output['betas_limbs']
# - calculate bone lengths
with torch.no_grad():
use_mean_bone_lengths = False
if use_mean_bone_lengths:
bone_lengths_prepared = torch.cat(batch_size*[self.mean_dog_bone_lengths.reshape((1, -1))])
else:
assert (bone_lengths_prepared is None)
bone_lengths_prepared = self.smal.caclulate_bone_lengths(pred_betas, pred_betas_limbs, shapedirs_sel=shapedirs_sel, short=True)
# ------------------------------ LINEAR 3D MODEL ------------------------------
# 3d model -> from image to 3d parameters {2d keypoints from heatmap, pose, trans, flength}
# prepare input for 2d-to-3d network
keypoints_prepared = torch.cat((keypoints_norm, scores), axis=2)
if bone_lengths_prepared is None:
bone_lengths_prepared = torch.cat(batch_size*[self.mean_dog_bone_lengths.reshape((1, -1))])
# should we add silhouette to 3d input? should we add z?
if self.add_segbps_to_3d_input:
seg_raw = last_seg
seg_prep_bps = self.soft_max(seg_raw)[:, 1, :, :] # class 1 is the dog
with torch.no_grad():
seg_prep_np = seg_prep_bps.detach().cpu().numpy()
bps_output_np = self.segbps_model.calculate_bps_points_batch(seg_prep_np) # (bs, 64, 2)
bps_output = torch.tensor(bps_output_np, dtype=torch.float32).to(device).reshape((batch_size, -1))
bps_output_prep = bps_output * 2. - 1
input_vec_keyp_bones = torch.cat((keypoints_prepared.reshape((batch_size, -1)), bone_lengths_prepared), axis=1)
input_vec = torch.cat((input_vec_keyp_bones, bps_output_prep), dim=1)
elif self.add_z_to_3d_input:
# we do not use this in our cvpr 2022 version
input_vec_keyp_bones = torch.cat((keypoints_prepared.reshape((batch_size, -1)), bone_lengths_prepared), axis=1)
input_vec_additional = pred_z
input_vec = torch.cat((input_vec_keyp_bones, input_vec_additional), dim=1)
else:
input_vec = torch.cat((keypoints_prepared.reshape((batch_size, -1)), bone_lengths_prepared), axis=1)
# predict 3d parameters (those are normalized, we need to correct mean and std in a next step)
output = self.model_3d(input_vec)
# add predicted keypoints to the output dict
output['keypoints_norm'] = keypoints_norm
output['keypoints_scores'] = scores
# add predicted segmentation to output dictc
output['seg_hg'] = hourglass_out_dict['seg_final']
# - denormalize 3d parameters -> so far predictions were normalized, now we denormalize them again
pred_trans = output['trans'] * norm_dict['trans_std'][None, :] + norm_dict['trans_mean'][None, :] # (bs, 3)
if self.structure_pose_net == 'default':
pred_pose_rot6d = output['pose'] + norm_dict['pose_rot6d_mean'][None, :]
elif self.structure_pose_net == 'normflow':
pose_rot6d_mean_zeros = torch.zeros_like(norm_dict['pose_rot6d_mean'][None, :])
pose_rot6d_mean_zeros[:, 0, :] = norm_dict['pose_rot6d_mean'][None, 0, :]
pred_pose_rot6d = output['pose'] + pose_rot6d_mean_zeros
else:
pose_rot6d_mean_zeros = torch.zeros_like(norm_dict['pose_rot6d_mean'][None, :])
pose_rot6d_mean_zeros[:, 0, :] = norm_dict['pose_rot6d_mean'][None, 0, :]
pred_pose_rot6d = output['pose'] + pose_rot6d_mean_zeros
pred_pose_reshx33 = rot6d_to_rotmat(pred_pose_rot6d.reshape((-1, 6)))
pred_pose = pred_pose_reshx33.reshape((batch_size, -1, 3, 3))
pred_pose_rot6d = rotmat_to_rot6d(pred_pose_reshx33).reshape((batch_size, -1, 6))
if self.fix_flength:
output['flength'] = torch.zeros_like(output['flength'])
pred_flength = torch.ones_like(output['flength'])*2100 # norm_dict['flength_mean'][None, :]
else:
pred_flength_orig = output['flength'] * norm_dict['flength_std'][None, :] + norm_dict['flength_mean'][None, :] # (bs, 1)
pred_flength = pred_flength_orig.clone() # torch.abs(pred_flength_orig)
pred_flength[pred_flength_orig<=0] = norm_dict['flength_mean'][None, :]
# ------------------------------ RENDERING ------------------------------
# get 3d model (SMAL)
V, keyp_green_3d, _ = self.smal(beta=pred_betas, betas_limbs=pred_betas_limbs, pose=pred_pose, trans=pred_trans, get_skin=True, keyp_conf=self.smal_keyp_conf, shapedirs_sel=shapedirs_sel)
keyp_3d = keyp_green_3d[:, :self.n_keyp, :] # (bs, 20, 3)
# render silhouette
faces_prep = self.smal.faces.unsqueeze(0).expand((batch_size, -1, -1))
if not self.silh_no_tail:
pred_silh_images, pred_keyp = self.silh_renderer(vertices=V,
points=keyp_3d, faces=faces_prep, focal_lengths=pred_flength)
else:
faces_no_tail_prep = torch.tensor(self.f_no_tail_np).to(device).expand((batch_size, -1, -1))
pred_silh_images, pred_keyp = self.silh_renderer(vertices=V,
points=keyp_3d, faces=faces_no_tail_prep, focal_lengths=pred_flength)
# get torch 'Meshes'
torch_meshes = self.silh_renderer.get_torch_meshes(vertices=V, faces=faces_prep)
# render body parts (not part of cvpr 2022 version)
if self.render_partseg:
raise NotImplementedError
else:
partseg_images = None
partseg_images_hg = None
# ------------------------------ REFINEMENT MODEL ------------------------------
# refinement model
pred_keyp_norm = (pred_keyp.detach() / (self.image_size - 1) - 0.5)*2
'''output_ref = self.refinement_model(keypoints_norm.detach(), pred_keyp_norm, \
seg_sh_raw=last_seg[:, :, :, :].detach(), seg_pred_prep=pred_silh_images[:, :, :, :].detach()-0.5, \
in_pose=output['pose'].detach(), in_trans=output['trans'].detach(), in_cam=output['flength'].detach(), in_betas=pred_betas.detach())'''
output_ref = self.refinement_model(keypoints_norm.detach(), pred_keyp_norm, \
seg_sh_raw=last_seg[:, :, :, :].detach(), seg_pred_prep=pred_silh_images[:, :, :, :].detach()-0.5, \
in_pose_3x3=pred_pose.detach(), in_trans_notnorm=output['trans'].detach(), in_cam_notnorm=output['flength'].detach(), in_betas=pred_betas.detach(), in_betas_limbs=pred_betas_limbs.detach())
# a better alternative would be to submit pred_pose_reshx33
# nothing changes for betas or shapedirs or z ##################### should probably not be detached in the end
if self.shaperef_type == 'inexistent':
if self.ref_detach_shape:
output_ref['betas'] = pred_betas.detach()
output_ref['betas_limbs'] = pred_betas_limbs.detach()
output_ref['z'] = pred_z.detach()
output_ref['shapedirs'] = shapedirs_sel.detach()
else:
output_ref['betas'] = pred_betas
output_ref['betas_limbs'] = pred_betas_limbs
output_ref['z'] = pred_z
output_ref['shapedirs'] = shapedirs_sel
else:
assert ('betas' in output_ref.keys())
assert ('betas_limbs' in output_ref.keys())
output_ref['shapedirs'] = shapedirs_sel
# we denormalize flength and trans, but pose is handled differently
if self.fix_flength:
output_ref['flength_notnorm'] = torch.zeros_like(output['flength'])
ref_pred_flength = torch.ones_like(output['flength_notnorm'])*2100 # norm_dict['flength_mean'][None, :]
raise ValueError # not sure if we want to have a fixed flength in refinement
else:
ref_pred_flength_orig = output_ref['flength_notnorm'] * norm_dict['flength_std'][None, :] + norm_dict['flength_mean'][None, :] # (bs, 1)
ref_pred_flength = ref_pred_flength_orig.clone() # torch.abs(pred_flength_orig)
ref_pred_flength[ref_pred_flength_orig<=0] = norm_dict['flength_mean'][None, :]
ref_pred_trans = output_ref['trans_notnorm'] * norm_dict['trans_std'][None, :] + norm_dict['trans_mean'][None, :] # (bs, 3)
# ref_pred_pose_rot6d = output_ref['pose']
# ref_pred_pose_reshx33 = rot6d_to_rotmat(output_ref['pose'].reshape((-1, 6))).reshape((batch_size, -1, 3, 3))
ref_pred_pose_reshx33 = output_ref['pose_rotmat'].reshape((batch_size, -1, 3, 3))
ref_pred_pose_rot6d = rotmat_to_rot6d(ref_pred_pose_reshx33.reshape((-1, 3, 3))).reshape((batch_size, -1, 6))
ref_V, ref_keyp_green_3d, _ = self.smal(beta=output_ref['betas'], betas_limbs=output_ref['betas_limbs'],
pose=ref_pred_pose_reshx33, trans=ref_pred_trans, get_skin=True, keyp_conf=self.smal_keyp_conf,
shapedirs_sel=output_ref['shapedirs'])
ref_keyp_3d = ref_keyp_green_3d[:, :self.n_keyp, :] # (bs, 20, 3)
if not self.silh_no_tail:
faces_prep = self.smal.faces.unsqueeze(0).expand((batch_size, -1, -1))
ref_pred_silh_images, ref_pred_keyp = self.silh_renderer(vertices=ref_V,
points=ref_keyp_3d, faces=faces_prep, focal_lengths=ref_pred_flength)
else:
faces_no_tail_prep = torch.tensor(self.f_no_tail_np).to(device).expand((batch_size, -1, -1))
ref_pred_silh_images, ref_pred_keyp = self.silh_renderer(vertices=ref_V,
points=ref_keyp_3d, faces=faces_no_tail_prep, focal_lengths=ref_pred_flength)
output_ref_unnorm = {'vertices_smal': ref_V,
'keyp_3d': ref_keyp_3d,
'keyp_2d': ref_pred_keyp,
'silh': ref_pred_silh_images,
'trans': ref_pred_trans,
'flength': ref_pred_flength,
'betas': output_ref['betas'],
'betas_limbs': output_ref['betas_limbs'],
# 'z': output_ref['z'],
'pose_rot6d': ref_pred_pose_rot6d,
'pose_rotmat': ref_pred_pose_reshx33}
# 'shapedirs': shapedirs_sel}
if not self.graphcnn_type == 'inexistent':
output_ref_unnorm['vertexwise_ground_contact'] = output_ref['vertexwise_ground_contact']
if not self.isflat_type=='inexistent':
output_ref_unnorm['isflat'] = output_ref['isflat']
if self.shaperef_type == 'inexistent':
output_ref_unnorm['z'] = output_ref['z']
# REMARK: we will want to have the predicted differences, for pose this would
# be a rotation matrix, ...
# -> TODO: adjust output_orig_ref_comparison
output_orig_ref_comparison = {#'pose': output['pose'].detach(),
#'trans': output['trans'].detach(),
#'flength': output['flength'].detach(),
# 'pose': output['pose'],
'old_pose_rotmat': pred_pose_reshx33,
'old_trans_notnorm': output['trans'],
'old_flength_notnorm': output['flength'],
# 'ref_pose': output_ref['pose'],
'ref_pose_rotmat': ref_pred_pose_reshx33,
'ref_trans_notnorm': output_ref['trans_notnorm'],
'ref_flength_notnorm': output_ref['flength_notnorm']}
# ------------------------------ PREPARE OUTPUT ------------------------------
# create output dictionarys
# output: contains all output from model_image_to_3d
# output_unnorm: same as output, but normalizations are undone
# output_reproj: smal output and reprojected keypoints as well as silhouette
keypoints_heatmap_256 = (output['keypoints_norm'] / 2. + 0.5) * (self.image_size - 1)
output_unnorm = {'pose_rotmat': pred_pose,
'flength': pred_flength,
'trans': pred_trans,
'keypoints':keypoints_heatmap_256}
output_reproj = {'vertices_smal': V,
'torch_meshes': torch_meshes,
'keyp_3d': keyp_3d,
'keyp_2d': pred_keyp,
'silh': pred_silh_images,
'betas': pred_betas,
'betas_limbs': pred_betas_limbs,
'pose_rot6d': pred_pose_rot6d, # used for pose prior...
'dog_breed': pred_breed,
'shapedirs': shapedirs_sel,
'z': pred_z,
'flength_unnorm': pred_flength,
'flength': output['flength'],
'partseg_images_rend': partseg_images,
'partseg_images_hg_nograd': partseg_images_hg,
'normflow_z': output['normflow_z']}
return output, output_unnorm, output_reproj, output_ref_unnorm, output_orig_ref_comparison
def forward_with_multiple_refinements(self, input_img, norm_dict=None, bone_lengths_prepared=None, betas=None):
# import pdb; pdb.set_trace()
# run normal network part
output, output_unnorm, output_reproj, output_ref_unnorm, output_orig_ref_comparison = self.forward(input_img, norm_dict=norm_dict, bone_lengths_prepared=bone_lengths_prepared, betas=betas)
# prepare input for second refinement stage
batch_size = output['keypoints_norm'].shape[0]
keypoints_norm = output['keypoints_norm']
pred_keyp_norm = (output_ref_unnorm['keyp_2d'].detach() / (self.image_size - 1) - 0.5)*2
last_seg = output['seg_hg']
pred_silh_images = output_ref_unnorm['silh'].detach()
trans_notnorm = output_orig_ref_comparison['ref_trans_notnorm']
flength_notnorm = output_orig_ref_comparison['ref_flength_notnorm']
# trans_notnorm = output_orig_ref_comparison['ref_pose_rotmat']
pred_pose = output_ref_unnorm['pose_rotmat'].reshape((batch_size, -1, 3, 3))
# run second refinement step
output_ref_new = self.refinement_model(keypoints_norm.detach(), pred_keyp_norm, \
seg_sh_raw=last_seg[:, :, :, :].detach(), seg_pred_prep=pred_silh_images[:, :, :, :].detach()-0.5, \
in_pose_3x3=pred_pose.detach(), in_trans_notnorm=trans_notnorm.detach(), in_cam_notnorm=flength_notnorm.detach(), \
in_betas=output_ref_unnorm['betas'].detach(), in_betas_limbs=output_ref_unnorm['betas_limbs'].detach())
# output_ref_new = self.refinement_model(keypoints_norm.detach(), pred_keyp_norm, seg_sh_raw=last_seg[:, :, :, :].detach(), seg_pred_prep=pred_silh_images[:, :, :, :].detach()-0.5, in_pose_3x3=pred_pose.detach(), in_trans_notnorm=trans_notnorm.detach(), in_cam_notnorm=flength_notnorm.detach(), in_betas=output_ref_unnorm['betas'].detach(), in_betas_limbs=output_ref_unnorm['betas_limbs'].detach())
# new shape
if self.shaperef_type == 'inexistent':
if self.ref_detach_shape:
output_ref_new['betas'] = output_ref_unnorm['betas'].detach()
output_ref_new['betas_limbs'] = output_ref_unnorm['betas_limbs'].detach()
output_ref_new['z'] = output_ref_unnorm['z'].detach()
output_ref_new['shapedirs'] = output_reproj['shapedirs'].detach()
else:
output_ref_new['betas'] = output_ref_unnorm['betas']
output_ref_new['betas_limbs'] = output_ref_unnorm['betas_limbs']
output_ref_new['z'] = output_ref_unnorm['z']
output_ref_new['shapedirs'] = output_reproj['shapedirs']
else:
assert ('betas' in output_ref_new.keys())
assert ('betas_limbs' in output_ref_new.keys())
output_ref_new['shapedirs'] = output_reproj['shapedirs']
# we denormalize flength and trans, but pose is handled differently
if self.fix_flength:
raise ValueError # not sure if we want to have a fixed flength in refinement
else:
ref_pred_flength_orig = output_ref_new['flength_notnorm'] * norm_dict['flength_std'][None, :] + norm_dict['flength_mean'][None, :] # (bs, 1)
ref_pred_flength = ref_pred_flength_orig.clone() # torch.abs(pred_flength_orig)
ref_pred_flength[ref_pred_flength_orig<=0] = norm_dict['flength_mean'][None, :]
ref_pred_trans = output_ref_new['trans_notnorm'] * norm_dict['trans_std'][None, :] + norm_dict['trans_mean'][None, :] # (bs, 3)
ref_pred_pose_reshx33 = output_ref_new['pose_rotmat'].reshape((batch_size, -1, 3, 3))
ref_pred_pose_rot6d = rotmat_to_rot6d(ref_pred_pose_reshx33.reshape((-1, 3, 3))).reshape((batch_size, -1, 6))
ref_V, ref_keyp_green_3d, _ = self.smal(beta=output_ref_new['betas'], betas_limbs=output_ref_new['betas_limbs'],
pose=ref_pred_pose_reshx33, trans=ref_pred_trans, get_skin=True, keyp_conf=self.smal_keyp_conf,
shapedirs_sel=output_ref_new['shapedirs'])
# ref_V, ref_keyp_green_3d, _ = self.smal(beta=output_ref_new['betas'], betas_limbs=output_ref_new['betas_limbs'], pose=ref_pred_pose_reshx33, trans=ref_pred_trans, get_skin=True, keyp_conf=self.smal_keyp_conf, shapedirs_sel=output_ref_new['shapedirs'])
ref_keyp_3d = ref_keyp_green_3d[:, :self.n_keyp, :] # (bs, 20, 3)
if not self.silh_no_tail:
faces_prep = self.smal.faces.unsqueeze(0).expand((batch_size, -1, -1))
ref_pred_silh_images, ref_pred_keyp = self.silh_renderer(vertices=ref_V,
points=ref_keyp_3d, faces=faces_prep, focal_lengths=ref_pred_flength)
else:
faces_no_tail_prep = torch.tensor(self.f_no_tail_np).to(device).expand((batch_size, -1, -1))
ref_pred_silh_images, ref_pred_keyp = self.silh_renderer(vertices=ref_V,
points=ref_keyp_3d, faces=faces_no_tail_prep, focal_lengths=ref_pred_flength)
output_ref_unnorm_new = {'vertices_smal': ref_V,
'keyp_3d': ref_keyp_3d,
'keyp_2d': ref_pred_keyp,
'silh': ref_pred_silh_images,
'trans': ref_pred_trans,
'flength': ref_pred_flength,
'betas': output_ref_new['betas'],
'betas_limbs': output_ref_new['betas_limbs'],
'pose_rot6d': ref_pred_pose_rot6d,
'pose_rotmat': ref_pred_pose_reshx33}
if not self.graphcnn_type == 'inexistent':
output_ref_unnorm_new['vertexwise_ground_contact'] = output_ref_new['vertexwise_ground_contact']
if not self.isflat_type=='inexistent':
output_ref_unnorm_new['isflat'] = output_ref_new['isflat']
if self.shaperef_type == 'inexistent':
output_ref_unnorm_new['z'] = output_ref_new['z']
output_orig_ref_comparison_new = {'ref_pose_rotmat': ref_pred_pose_reshx33,
'ref_trans_notnorm': output_ref_new['trans_notnorm'],
'ref_flength_notnorm': output_ref_new['flength_notnorm']}
results = {
'output': output,
'output_unnorm': output_unnorm,
'output_reproj':output_reproj,
'output_ref_unnorm': output_ref_unnorm,
'output_orig_ref_comparison':output_orig_ref_comparison,
'output_ref_unnorm_new': output_ref_unnorm_new,
'output_orig_ref_comparison_new': output_orig_ref_comparison_new}
return results
def render_vis_nograd(self, vertices, focal_lengths, color=0):
# this function is for visualization only
# vertices: (bs, n_verts, 3)
# focal_lengths: (bs, 1)
# color: integer, either 0 or 1
# returns a torch tensor of shape (bs, image_size, image_size, 3)
with torch.no_grad():
batch_size = vertices.shape[0]
faces_prep = self.smal.faces.unsqueeze(0).expand((batch_size, -1, -1))
visualizations = self.silh_renderer.get_visualization_nograd(vertices,
faces_prep, focal_lengths, color=color)
return visualizations