import os os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]="0" try: # os.system("pip install --upgrade torch==1.11.0+cu113 torchvision==0.12.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html") os.system("pip install --upgrade torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/cu101/torch_stable.html") except Exception as e: print(e) import argparse import os.path import json import numpy as np import pickle as pkl import csv from distutils.util import strtobool import torch from torch import nn import torch.backends.cudnn from torch.nn import DataParallel from torch.utils.data import DataLoader from collections import OrderedDict import glob from tqdm import tqdm from dominate import document from dominate.tags import * from PIL import Image from matplotlib import pyplot as plt import trimesh import cv2 import shutil import random from datetime import datetime import gradio as gr import torchvision from torchvision.models.detection.faster_rcnn import FastRCNNPredictor import torchvision.transforms as T from pytorch3d.structures import Meshes from pytorch3d.loss import mesh_edge_loss, mesh_laplacian_smoothing, mesh_normal_consistency import sys sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', 'src')) from combined_model.train_main_image_to_3d_wbr_withref import do_validation_epoch from combined_model.model_shape_v7_withref_withgraphcnn import ModelImageTo3d_withshape_withproj from configs.barc_cfg_defaults import get_cfg_defaults, update_cfg_global_with_yaml, get_cfg_global_updated from lifting_to_3d.utils.geometry_utils import rot6d_to_rotmat, rotmat_to_rot6d from stacked_hourglass.datasets.utils_dataset_selection import get_evaluation_dataset, get_sketchfab_evaluation_dataset, get_crop_evaluation_dataset, get_norm_dict, get_single_crop_dataset_from_image from test_time_optimization.bite_inference_model_for_ttopt import BITEInferenceModel from smal_pytorch.smal_model.smal_torch_new import SMAL from configs.SMAL_configs import SMAL_MODEL_CONFIG from smal_pytorch.renderer.differentiable_renderer import SilhRenderer from test_time_optimization.utils.utils_ttopt import reset_loss_values, get_optimed_pose_with_glob from combined_model.loss_utils.loss_utils import leg_sideway_error, leg_torsion_error, tail_sideway_error, tail_torsion_error, spine_torsion_error, spine_sideway_error from combined_model.loss_utils.loss_utils_gc import LossGConMesh, calculate_plane_errors_batch from combined_model.loss_utils.loss_arap import Arap_Loss from combined_model.loss_utils.loss_laplacian_mesh_comparison import LaplacianCTF # (coarse to fine animal) from graph_networks import graphcmr # .utils_mesh import Mesh from stacked_hourglass.utils.visualization import save_input_image_with_keypoints, save_input_image random.seed(2) print( "torch: ", torch.__version__, "\ntorchvision: ", torchvision.__version__, ) def get_prediction(model, img_path_or_img, confidence=0.5): """ see https://haochen23.github.io/2020/04/object-detection-faster-rcnn.html#.YsMCm4TP3-g get_prediction parameters: - img_path - path of the input image - confidence - threshold value for prediction score method: - Image is obtained from the image path - the image is converted to image tensor using PyTorch's Transforms - image is passed through the model to get the predictions - class, box coordinates are obtained, but only prediction score > threshold are chosen. """ if isinstance(img_path_or_img, str): img = Image.open(img_path_or_img).convert('RGB') else: img = img_path_or_img transform = T.Compose([T.ToTensor()]) img = transform(img) pred = model([img]) # pred_class = [COCO_INSTANCE_CATEGORY_NAMES[i] for i in list(pred[0]['labels'].numpy())] pred_class = list(pred[0]['labels'].numpy()) pred_boxes = [[(int(i[0]), int(i[1])), (int(i[2]), int(i[3]))] for i in list(pred[0]['boxes'].detach().numpy())] pred_score = list(pred[0]['scores'].detach().numpy()) try: pred_t = [pred_score.index(x) for x in pred_score if x>confidence][-1] pred_boxes = pred_boxes[:pred_t+1] pred_class = pred_class[:pred_t+1] return pred_boxes, pred_class, pred_score except: print('no bounding box with a score that is high enough found! -> work on full image') return None, None, None def detect_object(model, img_path_or_img, confidence=0.5, rect_th=2, text_size=0.5, text_th=1): """ see https://haochen23.github.io/2020/04/object-detection-faster-rcnn.html#.YsMCm4TP3-g object_detection_api parameters: - img_path_or_img - path of the input image - confidence - threshold value for prediction score - rect_th - thickness of bounding box - text_size - size of the class label text - text_th - thichness of the text method: - prediction is obtained from get_prediction method - for each prediction, bounding box is drawn and text is written with opencv - the final image is displayed """ boxes, pred_cls, pred_scores = get_prediction(model, img_path_or_img, confidence) if isinstance(img_path_or_img, str): img = cv2.imread(img_path_or_img) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) else: img = img_path_or_img is_first = True bbox = None if boxes is not None: for i in range(len(boxes)): cls = pred_cls[i] if cls == 18 and bbox is None: cv2.rectangle(img, boxes[i][0], boxes[i][1],color=(0, 255, 0), thickness=rect_th) # cv2.putText(img, pred_cls[i], boxes[i][0], cv2.FONT_HERSHEY_SIMPLEX, text_size, (0,255,0),thickness=text_th) # cv2.putText(img, str(pred_scores[i]), boxes[i][0], cv2.FONT_HERSHEY_SIMPLEX, text_size, (0,255,0),thickness=text_th) bbox = boxes[i] return img, bbox # -------------------------------------------------------------------------------------------------------------------- # model_bbox = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True) model_bbox.eval() def run_bbox_inference(input_image): # load configs cfg = get_cfg_global_updated() out_path = os.path.join(cfg.paths.ROOT_OUT_PATH, 'gradio_examples', 'test2.png') img, bbox = detect_object(model=model_bbox, img_path_or_img=input_image, confidence=0.5) # fig = plt.figure() # plt.figure(figsize=(20,30)) # plt.imsave(out_path, img) return img, bbox # -------------------------------------------------------------------------------------------------------------------- # args_config = "refinement_cfg_test_withvertexwisegc_csaddnonflat.yaml" # args_model_file_complete = "cvpr23_dm39dnnv3barcv2b_refwithgcpervertisflat0morestanding0/checkpoint.pth.tar" args_model_file_complete = "cvpr23_dm39dnnv3barcv2b_refwithgcpervertisflat0morestanding0_forrelease_v0/checkpoint.pth.tar" args_suffix = "ttopt_v0" args_loss_weight_ttopt_path = "bite_loss_weights_ttopt.json" args_workers = 12 # -------------------------------------------------------------------------------------------------------------------- # # load configs # step 1: load default configs # step 2: load updates from .yaml file path_config = os.path.join(get_cfg_defaults().barc_dir, 'src', 'configs', args_config) update_cfg_global_with_yaml(path_config) cfg = get_cfg_global_updated() # define path to load the trained model path_model_file_complete = os.path.join(cfg.paths.ROOT_CHECKPOINT_PATH, args_model_file_complete) # define and create paths to save results out_sub_name = cfg.data.VAL_OPT + '_' + cfg.data.DATASET + '_' + args_suffix + '/' root_out_path = os.path.join(os.path.dirname(path_model_file_complete).replace(cfg.paths.ROOT_CHECKPOINT_PATH, cfg.paths.ROOT_OUT_PATH + 'results_gradio/'), out_sub_name) root_out_path_details = root_out_path + 'details/' if not os.path.exists(root_out_path): os.makedirs(root_out_path) if not os.path.exists(root_out_path_details): os.makedirs(root_out_path_details) print('root_out_path: ' + root_out_path) # other paths root_data_path = os.path.join(os.path.dirname(__file__), '../', 'data') # downsampling as used in graph neural network root_smal_downsampling = os.path.join(root_data_path, 'graphcmr_data') # remeshing as used for ground contact remeshing_path = os.path.join(root_data_path, 'smal_data_remeshed', 'uniform_surface_sampling', 'my_smpl_39dogsnorm_Jr_4_dog_remesh4000_info.pkl') loss_weight_path = os.path.join(os.path.dirname(__file__), '../', 'src', 'configs', 'ttopt_loss_weights', args_loss_weight_ttopt_path) print(loss_weight_path) # Select the hardware device to use for training. if torch.cuda.is_available() and cfg.device=='cuda': device = torch.device('cuda', torch.cuda.current_device()) torch.backends.cudnn.benchmark = False # True else: device = torch.device('cpu') print('structure_pose_net: ' + cfg.params.STRUCTURE_POSE_NET) print('refinement network type: ' + cfg.params.REF_NET_TYPE) print('smal_model_type: ' + cfg.smal.SMAL_MODEL_TYPE) # prepare complete model norm_dict = get_norm_dict(data_info=None, device=device) bite_model = BITEInferenceModel(cfg, path_model_file_complete, norm_dict) smal_model_type = bite_model.smal_model_type logscale_part_list = SMAL_MODEL_CONFIG[smal_model_type]['logscale_part_list'] # ['legs_l', 'legs_f', 'tail_l', 'tail_f', 'ears_y', 'ears_l', 'head_l'] smal = SMAL(smal_model_type=smal_model_type, template_name='neutral', logscale_part_list=logscale_part_list).to(device) silh_renderer = SilhRenderer(image_size=256).to(device) # load loss modules -> not necessary! # loss_module = Loss(smal_model_type=cfg.smal.SMAL_MODEL_TYPE, data_info=StanExt.DATA_INFO, nf_version=cfg.params.NF_VERSION).to(device) # loss_module_ref = LossRef(smal_model_type=cfg.smal.SMAL_MODEL_TYPE, data_info=StanExt.DATA_INFO, nf_version=cfg.params.NF_VERSION).to(device) # remeshing utils with open(remeshing_path, 'rb') as fp: remeshing_dict = pkl.load(fp) remeshing_relevant_faces = torch.tensor(remeshing_dict['smal_faces'][remeshing_dict['faceid_closest']], dtype=torch.long, device=device) remeshing_relevant_barys = torch.tensor(remeshing_dict['barys_closest'], dtype=torch.float32, device=device) # create path for output files save_imgs_path = os.path.join(cfg.paths.ROOT_OUT_PATH, 'gradio_examples') if not os.path.exists(save_imgs_path): os.makedirs(save_imgs_path) def run_bite_inference(input_image, bbox=None, apply_ttopt=True, dog_name="dog_model"): with open(loss_weight_path, 'r') as j: losses = json.loads(j.read()) shutil.copyfile(loss_weight_path, root_out_path_details + os.path.basename(loss_weight_path)) # prepare dataset and dataset loader val_dataset, val_loader, len_val_dataset, test_name_list, stanext_data_info, stanext_acc_joints = get_single_crop_dataset_from_image(input_image, bbox=bbox) # summarize information for normalization norm_dict = get_norm_dict(stanext_data_info, device) # get keypoint weights keypoint_weights = torch.tensor(stanext_data_info.keypoint_weights, dtype=torch.float)[None, :].to(device) # prepare progress bar iterable = enumerate(val_loader) # the length of this iterator should be 1 progress = None if False: # not quiet: progress = tqdm(iterable, desc='Train', total=len(val_loader), ascii=True, leave=False) iterable = progress ind_img_tot = 0 for i, (input, target_dict) in iterable: batch_size = input.shape[0] # prepare variables, put them on the right device for key in target_dict.keys(): if key == 'breed_index': target_dict[key] = target_dict[key].long().to(device) elif key in ['index', 'pts', 'tpts', 'target_weight', 'silh', 'silh_distmat_tofg', 'silh_distmat_tobg', 'sim_breed_index', 'img_border_mask']: target_dict[key] = target_dict[key].float().to(device) elif key == 'has_seg': target_dict[key] = target_dict[key].to(device) else: pass input = input.float().to(device) # get starting values for the optimization preds_dict = bite_model.get_all_results(input) # res_normal_and_ref = bite_model.get_selected_results(preds_dict=preds_dict, result_networks=['normal', 'ref']) res = bite_model.get_selected_results(preds_dict=preds_dict, result_networks=['ref'])['ref'] bs = res['pose_rotmat'].shape[0] all_pose_6d = rotmat_to_rot6d(res['pose_rotmat'][:, None, 1:, :, :].clone().reshape((-1, 3, 3))).reshape((bs, -1, 6)) # [bs, 34, 6] all_orient_6d = rotmat_to_rot6d(res['pose_rotmat'][:, None, :1, :, :].clone().reshape((-1, 3, 3))).reshape((bs, -1, 6)) # [bs, 1, 6] ind_img = 0 name = (test_name_list[target_dict['index'][ind_img].long()]).replace('/', '__').split('.')[0] ind_img_tot += 1 batch_size = 1 # initialize the variables over which we want to optimize optimed_pose_6d = all_pose_6d[ind_img, None, :, :].to(device).clone().detach().requires_grad_(True) optimed_orient_6d = all_orient_6d[ind_img, None, :, :].to(device).clone().detach().requires_grad_(True) # [1, 1, 6] optimed_betas = res['betas'][ind_img, None, :].to(device).clone().detach().requires_grad_(True) # [1,30] optimed_trans_xy = res['trans'][ind_img, None, :2].to(device).clone().detach().requires_grad_(True) optimed_trans_z =res['trans'][ind_img, None, 2:3].to(device).clone().detach().requires_grad_(True) optimed_camera_flength = res['flength'][ind_img, None, :].to(device).clone().detach().requires_grad_(True) # [1,1] n_vert_comp = 2*smal.n_center + 3*smal.n_left optimed_vert_off_compact = torch.tensor(np.zeros((batch_size, n_vert_comp)), dtype=torch.float, device=device, requires_grad=True) assert len(logscale_part_list) == 7 new_betas_limb_lengths = res['betas_limbs'][ind_img, None, :] optimed_betas_limbs = new_betas_limb_lengths.to(device).clone().detach().requires_grad_(True) # [1,7] # define the optimizers optimizer = torch.optim.SGD( # [optimed_pose, optimed_trans_xy, optimed_betas, optimed_betas_limbs, optimed_orient, optimed_vert_off_compact], [optimed_camera_flength, optimed_trans_z, optimed_trans_xy, optimed_pose_6d, optimed_orient_6d, optimed_betas, optimed_betas_limbs], lr=5*1e-4, # 1e-3, momentum=0.9) optimizer_vshift = torch.optim.SGD( [optimed_camera_flength, optimed_trans_z, optimed_trans_xy, optimed_pose_6d, optimed_orient_6d, optimed_betas, optimed_betas_limbs, optimed_vert_off_compact], lr=1e-4, # 1e-4, momentum=0.9) nopose_optimizer = torch.optim.SGD( # [optimed_pose, optimed_trans_xy, optimed_betas, optimed_betas_limbs, optimed_orient, optimed_vert_off_compact], [optimed_camera_flength, optimed_trans_z, optimed_trans_xy, optimed_orient_6d, optimed_betas, optimed_betas_limbs], lr=5*1e-4, # 1e-3, momentum=0.9) nopose_optimizer_vshift = torch.optim.SGD( [optimed_camera_flength, optimed_trans_z, optimed_trans_xy, optimed_orient_6d, optimed_betas, optimed_betas_limbs, optimed_vert_off_compact], lr=1e-4, # 1e-4, momentum=0.9) # define schedulers patience = 5 scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( optimizer, mode='min', factor=0.5, verbose=0, min_lr=1e-5, patience=patience) scheduler_vshift = torch.optim.lr_scheduler.ReduceLROnPlateau( optimizer_vshift, mode='min', factor=0.5, verbose=0, min_lr=1e-5, patience=patience) # set all loss values to 0 losses = reset_loss_values(losses) # prepare all the target labels: keypoints, silhouette, ground contact, ... with torch.no_grad(): thr_kp = 0.2 kp_weights = res['hg_keyp_scores'] kp_weights[res['hg_keyp_scores']ai', remeshing_relevant_barys, target_gc_class[:, remeshing_relevant_faces].to(device=device, dtype=torch.float32)) target_gc_class_remeshed_prep = torch.round(target_gc_class_remeshed).to(torch.long) # vert_colors = np.repeat(255*target_gc_class.detach().cpu().numpy()[0, :, None], 3, 1) # vert_colors[:, 2] = 255 vert_colors = np.ones_like(np.repeat(target_gc_class.detach().cpu().numpy()[0, :, None], 3, 1)) * 255 faces_prep = smal.faces.unsqueeze(0).expand((batch_size, -1, -1)) # prepare target silhouette and keypoints, from stacked hourglass predictions target_hg_silh = res['hg_silh_prep'][ind_img, :, :].detach() target_kp_resh = res['hg_keyp_256'][ind_img, None, :, :].reshape((-1, 2)).detach() # find out if ground contact constraints should be used for the image at hand if res['isflat_prep'][ind_img] >= 0.5: # threshold should probably be set higher isflat = [True] else: isflat = [False] if target_gc_class_remeshed_prep.sum() > 3: istouching = [True] else: istouching = [False] ignore_pose_optimization = False if not apply_ttopt: # get 3d smal model optimed_pose_with_glob = get_optimed_pose_with_glob(optimed_orient_6d, optimed_pose_6d) optimed_trans = torch.cat((optimed_trans_xy, optimed_trans_z), dim=1) smal_verts, keyp_3d, _ = smal(beta=optimed_betas, betas_limbs=optimed_betas_limbs, pose=optimed_pose_with_glob, vert_off_compact=optimed_vert_off_compact, trans=optimed_trans, keyp_conf='olive', get_skin=True) # save mesh my_mesh_tri = trimesh.Trimesh(vertices=smal_verts[0, ...].detach().cpu().numpy(), faces=faces_prep[0, ...].detach().cpu().numpy(), process=False, maintain_order=True) my_mesh_tri.visual.vertex_colors = vert_colors # my_mesh_tri.export(root_out_path + name + '_res_e000' + '.obj') else: ########################################################################################################## # start optimizing for this image n_iter = 301 # how many iterations are desired? (+1) loop = range(n_iter) per_loop_lst = [] list_error_procrustes = [] for i in loop: # for the first 150 iterations steps we don't allow vertex shifts if i == 0: current_i = 0 if ignore_pose_optimization: current_optimizer = nopose_optimizer else: current_optimizer = optimizer current_scheduler = scheduler current_weight_name = 'weight' # after 150 iteration steps we start with vertex shifts elif i == 150: current_i = 0 if ignore_pose_optimization: current_optimizer = nopose_optimizer_vshift else: current_optimizer = optimizer_vshift current_scheduler = scheduler_vshift current_weight_name = 'weight_vshift' # set up arap loss if losses["arap"]['weight_vshift'] > 0.0: with torch.no_grad(): torch_mesh_comparison = Meshes(smal_verts.detach(), faces_prep.detach()) arap_loss = Arap_Loss(meshes=torch_mesh_comparison, device=device) # is there a laplacian loss similar as in coarse-to-fine? if losses["lapctf"]['weight_vshift'] > 0.0: torch_verts_comparison = smal_verts.detach().clone() smal_model_type_downsampling = '39dogs_norm' smal_downsampling_npz_name = 'mesh_downsampling_' + os.path.basename(SMAL_MODEL_CONFIG[smal_model_type_downsampling]['smal_model_path']).replace('.pkl', '_template.npz') smal_downsampling_npz_path = os.path.join(root_smal_downsampling, smal_downsampling_npz_name) data = np.load(smal_downsampling_npz_path, encoding='latin1', allow_pickle=True) adjmat = data['A'][0] laplacian_ctf = LaplacianCTF(adjmat, device=device) else: pass current_optimizer.zero_grad() # get 3d smal model optimed_pose_with_glob = get_optimed_pose_with_glob(optimed_orient_6d, optimed_pose_6d) optimed_trans = torch.cat((optimed_trans_xy, optimed_trans_z), dim=1) smal_verts, keyp_3d, _ = smal(beta=optimed_betas, betas_limbs=optimed_betas_limbs, pose=optimed_pose_with_glob, vert_off_compact=optimed_vert_off_compact, trans=optimed_trans, keyp_conf='olive', get_skin=True) # render silhouette and keypoints pred_silh_images, pred_keyp_raw = silh_renderer(vertices=smal_verts, points=keyp_3d, faces=faces_prep, focal_lengths=optimed_camera_flength) pred_keyp = pred_keyp_raw[:, :24, :] # save silhouette reprojection visualization """ if i==0: img_silh = Image.fromarray(np.uint8(255*pred_silh_images[0, 0, :, :].detach().cpu().numpy())).convert('RGB') img_silh.save(root_out_path_details + name + '_silh_ainit.png') my_mesh_tri = trimesh.Trimesh(vertices=smal_verts[0, ...].detach().cpu().numpy(), faces=faces_prep[0, ...].detach().cpu().numpy(), process=False, maintain_order=True) my_mesh_tri.export(root_out_path_details + name + '_res_ainit.obj') """ # silhouette loss diff_silh = torch.abs(pred_silh_images[0, 0, :, :] - target_hg_silh) losses['silhouette']['value'] = diff_silh.mean() # keypoint_loss output_kp_resh = (pred_keyp[0, :, :]).reshape((-1, 2)) losses['keyp']['value'] = ((((output_kp_resh - target_kp_resh)[weights_resh>0]**2).sum(axis=1).sqrt() * \ weights_resh[weights_resh>0])*keyp_w_resh[weights_resh>0]).sum() / \ max((weights_resh[weights_resh>0]*keyp_w_resh[weights_resh>0]).sum(), 1e-5) # losses['keyp']['value'] = ((((output_kp_resh - target_kp_resh)[weights_resh>0]**2).sum(axis=1).sqrt()*weights_resh[weights_resh>0])*keyp_w_resh[weights_resh>0]).sum() / max((weights_resh[weights_resh>0]*keyp_w_resh[weights_resh>0]).sum(), 1e-5) # pose priors on refined pose losses['pose_legs_side']['value'] = leg_sideway_error(optimed_pose_with_glob) losses['pose_legs_tors']['value'] = leg_torsion_error(optimed_pose_with_glob) losses['pose_tail_side']['value'] = tail_sideway_error(optimed_pose_with_glob) losses['pose_tail_tors']['value'] = tail_torsion_error(optimed_pose_with_glob) losses['pose_spine_side']['value'] = spine_sideway_error(optimed_pose_with_glob) losses['pose_spine_tors']['value'] = spine_torsion_error(optimed_pose_with_glob) # ground contact loss sel_verts = torch.index_select(smal_verts, dim=1, index=remeshing_relevant_faces.reshape((-1))).reshape((batch_size, remeshing_relevant_faces.shape[0], 3, 3)) verts_remeshed = torch.einsum('ij,aijk->aik', remeshing_relevant_barys, sel_verts) # gc_errors_plane, gc_errors_under_plane = calculate_plane_errors_batch(verts_remeshed, target_gc_class_remeshed_prep, target_dict['has_gc'], target_dict['has_gc_is_touching']) gc_errors_plane, gc_errors_under_plane = calculate_plane_errors_batch(verts_remeshed, target_gc_class_remeshed_prep, isflat, istouching) losses['gc_plane']['value'] = torch.mean(gc_errors_plane) losses['gc_belowplane']['value'] = torch.mean(gc_errors_under_plane) # edge length of the predicted mesh if (losses["edge"][current_weight_name] + losses["normal"][ current_weight_name] + losses["laplacian"][ current_weight_name]) > 0: torch_mesh = Meshes(smal_verts, faces_prep.detach()) losses["edge"]['value'] = mesh_edge_loss(torch_mesh) # mesh normal consistency losses["normal"]['value'] = mesh_normal_consistency(torch_mesh) # mesh laplacian smoothing losses["laplacian"]['value'] = mesh_laplacian_smoothing(torch_mesh, method="uniform") # arap loss if losses["arap"][current_weight_name] > 0.0: torch_mesh = Meshes(smal_verts, faces_prep.detach()) losses["arap"]['value'] = arap_loss(torch_mesh) # laplacian loss for comparison (from coarse-to-fine paper) if losses["lapctf"][current_weight_name] > 0.0: verts_refine = smal_verts loss_almost_arap, loss_smooth = laplacian_ctf(verts_refine, torch_verts_comparison) losses["lapctf"]['value'] = loss_almost_arap # Weighted sum of the losses total_loss = 0.0 for k in ['keyp', 'silhouette', 'pose_legs_side', 'pose_legs_tors', 'pose_tail_side', 'pose_tail_tors', 'pose_spine_tors', 'pose_spine_side', 'gc_plane', 'gc_belowplane', 'edge', 'normal', 'laplacian', 'arap', 'lapctf']: if losses[k][current_weight_name] > 0.0: total_loss += losses[k]['value'] * losses[k][current_weight_name] # calculate gradient and make optimization step total_loss.backward(retain_graph=True) # current_optimizer.step() current_scheduler.step(total_loss) # loop.set_description(f"Body Fitting = {total_loss.item():.3f}") # save the result three times (0, 150, 300) if i == 300: # if i % 150 == 0: # save silhouette image img_silh = Image.fromarray(np.uint8(255*pred_silh_images[0, 0, :, :].detach().cpu().numpy())).convert('RGB') img_silh.save(root_out_path_details + name + '_silh_e' + format(i, '03d') + '.png') # save image overlay visualizations = silh_renderer.get_visualization_nograd(smal_verts, faces_prep, optimed_camera_flength, color=0) pred_tex = visualizations[0, :, :, :].permute((1, 2, 0)).cpu().detach().numpy() / 256 # out_path = root_out_path_details + name + '_tex_pred_e' + format(i, '03d') + '.png' # plt.imsave(out_path, pred_tex) pred_tex_max = np.max(pred_tex, axis=2) out_path = root_out_path + name + '_comp_pred_e' + format(i, '03d') + '.png' # save mesh my_mesh_tri = trimesh.Trimesh(vertices=smal_verts[0, ...].detach().cpu().numpy(), faces=faces_prep[0, ...].detach().cpu().numpy(), process=False, maintain_order=True) my_mesh_tri.visual.vertex_colors = vert_colors # my_mesh_tri.export(root_out_path + name + '_res_e' + format(i, '03d') + '.obj') # save focal length (together with the mesh this is enough to create an overlay in blender) # out_file_flength = root_out_path_details + name + '_flength_e' + format(i, '03d') # + '.npz' # np.save(out_file_flength, optimed_camera_flength.detach().cpu().numpy()) current_i += 1 # prepare output mesh mesh = my_mesh_tri # all_results[0]['mesh_posed'] mesh.apply_transform([[-1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 1, 1], [0, 0, 0, 1]]) result_path = os.path.join(save_imgs_path, dog_name) mesh.export(file_obj=result_path + '.glb') result_gltf = result_path + '.glb' return result_gltf # -------------------------------------------------------------------------------------------------------------------- # total_count = 0 def run_complete_inference(img_path_or_img, crop_choice, use_ttopt): now = datetime.now() dt_string = now.strftime("%d/%m/%Y %H:%M:%S") global total_count total_count += 1 print(dt_string + ' total count: ' + str(total_count)) # depending on crop_choice: run faster r-cnn or take the input image directly if crop_choice == "input image is cropped": if isinstance(img_path_or_img, str): img = cv2.imread(img_path_or_img) output_interm_image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) else: output_interm_image = img_path_or_img output_interm_bbox = None else: output_interm_image, output_interm_bbox = run_bbox_inference(img_path_or_img.copy()) if use_ttopt == "enable test-time optimization": apply_ttopt = True else: apply_ttopt = False # run barc inference if img_path_or_img.dtype == str: dog_name = os.path.basename(img_path_or_img).split(".")[0] else: dog_name = "dog" result_gltf = run_bite_inference(img_path_or_img, output_interm_bbox, apply_ttopt, dog_name=dog_name) # add white border to image for nicer alignment output_interm_image_vis = np.concatenate((255*np.ones_like(output_interm_image), output_interm_image, 255*np.ones_like(output_interm_image)), axis=1) return [result_gltf, result_gltf, output_interm_image_vis] ######################################################################################################################## # see: https://huggingface.co/spaces/radames/PIFu-Clothed-Human-Digitization/blob/main/PIFu/spaces.py description = ''' # BITE #### Project Page * https://bite.is.tue.mpg.de/ #### Description This is a demo for BITE (*B*eyond Priors for *I*mproved *T*hree-{D} Dog Pose *E*stimation). To run inference on one of the examples below, click on the desired image and push the submit button. Alternatively, you may upload one of your own images. You can either submit a cropped image or choose the option to run a pretrained Faster R-CNN in order to obtain a bounding box. While we recommend enabeling test-time optimization (computation can take up to a minute), you have the possibility to skip it, which will lead to faster calculation (a few seconds) at the cost of less accurate results.
More #### Citation ``` @inproceedings{bite2023rueegg, title = {{BITE}: Beyond Priors for Improved Three-{D} Dog Pose Estimation}, author = {R\"uegg, Nadine and Tripathi, Shashank and Schindler, Konrad and Black, Michael J. and Zuffi, Silvia}, booktitle = {IEEE/CVF Conf.~on Computer Vision and Pattern Recognition (CVPR)}, pages = {8867-8876}, year = {2023}, } ``` #### Image Sources * Stanford extra image dataset * Images from google search engine * https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRnx2sHnnLU3zy1XnJB7BvGUR9spmAh5bxTUg&usqp=CAU * https://www.westend61.de/en/imageView/CAVF56467/portrait-of-dog-lying-on-floor-at-home #### Disclosure The results shown in this demo are slightly improved compared to the ones depicted within our paper, as we apply a regularizer on the tail.
''' example_images = sorted(glob.glob(os.path.join(os.path.dirname(__file__), '../', 'datasets', 'test_image_crops', '*.jpg')) + glob.glob(os.path.join(os.path.dirname(__file__), '../', 'datasets', 'test_image_crops', '*.jpeg')) + glob.glob(os.path.join(os.path.dirname(__file__), '../', 'datasets', 'test_image_crops', '*.png'))) random.shuffle(example_images) # example_images.reverse() # examples = [[img, "input image is cropped"] for img in example_images] examples = [] for img in example_images: if os.path.basename(img)[:2] == 'z_': examples.append([img, "use Faster R-CNN to get a bounding box", "enable test-time optimization"]) else: examples.append([img, "input image is cropped", "enable test-time optimization"]) demo = gr.Interface( fn=run_complete_inference, description=description, inputs=[gr.Image(label="Input Image"), gr.Radio(["input image is cropped", "use Faster R-CNN to get a bounding box"], value="use Faster R-CNN to get a bounding box", label="Crop Choice"), gr.Radio(["enable test-time optimization", "skip test-time optimization"], value="enable test-time optimization", label="Test Time Optimization"), ], outputs=[ gr.Model3D( clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model"), gr.File(label="Download 3D Model"), gr.Image(label="Bounding Box (Faster R-CNN prediction)"), ], examples=examples, thumbnail="bite_thumbnail.png", allow_flagging="never", cache_examples=True, examples_per_page=14, ) demo.launch() # share=True)