runaksh's picture
Update app.py
7cd6025 verified
import os
import gradio
from PIL import Image
from timeit import default_timer as timer
from tensorflow import keras
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import numpy as np
loaded_model = AutoModelForSequenceClassification.from_pretrained("runaksh/financial_sentiment_distilBERT")
loaded_tokenizer = AutoTokenizer.from_pretrained("runaksh/financial_sentiment_distilBERT")
# Function for class prediction
def predict(sample, validate=True):
classifier = pipeline("text-classification", model=loaded_model, tokenizer=loaded_tokenizer)
pred = classifier(sample)[0]['label']
return pred
title = "Financial Sentiment Classification"
description = "Enter the news"
# Gradio elements
# Input from user
in_prompt = gradio.components.Textbox(lines=2, label='Enter the News')
# Output response
out_response = gradio.components.Textbox(label='Sentiment')
# Gradio interface to generate UI link
iface = gradio.Interface(fn=predict,
inputs = in_prompt,
outputs = out_response,
title=title,
description=description
)
iface.launch(debug = True)