Spaces:
Running
Running
added files
Browse files- __init__.py +0 -0
- app.py +123 -5
- app_settings.py +46 -0
- backend/__init__.py +0 -0
- backend/__pycache__/__init__.cpython-311.pyc +0 -0
- backend/__pycache__/image_saver.cpython-311.pyc +0 -0
- backend/__pycache__/lcm_text_to_image.cpython-311.pyc +0 -0
- backend/image_saver.py +39 -0
- backend/lcm_text_to_image.py +115 -0
- backend/lcmdiffusion/pipelines/latent_consistency_txt2img.py +730 -0
- backend/lcmdiffusion/pipelines/openvino/__pycache__/lcm_ov_pipeline.cpython-311.pyc +0 -0
- backend/lcmdiffusion/pipelines/openvino/__pycache__/lcm_scheduler.cpython-311.pyc +0 -0
- backend/lcmdiffusion/pipelines/openvino/lcm_ov_pipeline.py +390 -0
- backend/lcmdiffusion/pipelines/openvino/lcm_scheduler.py +529 -0
- backend/models/__pycache__/lcmdiffusion_setting.cpython-311.pyc +0 -0
- backend/models/lcmdiffusion_setting.py +19 -0
- constants.py +10 -0
- context.py +44 -0
- frontend/__pycache__/utils.cpython-311.pyc +0 -0
- frontend/gui/__pycache__/app_window.cpython-311.pyc +0 -0
- frontend/gui/__pycache__/image_generator_worker.cpython-311.pyc +0 -0
- frontend/gui/__pycache__/ui.cpython-311.pyc +0 -0
- frontend/gui/app_window.py +435 -0
- frontend/gui/image_generator_worker.py +37 -0
- frontend/gui/ui.py +15 -0
- frontend/utils.py +32 -0
- frontend/webui/css/style.css +24 -0
- frontend/webui/text_to_image_ui.py +179 -0
- frontend/webui/ui.py +36 -0
- models/__pycache__/interface_types.cpython-311.pyc +0 -0
- models/__pycache__/settings.cpython-311.pyc +0 -0
- models/interface_types.py +7 -0
- models/settings.py +8 -0
- paths.py +48 -0
- requirements.txt +13 -0
- utils.py +10 -0
__init__.py
ADDED
File without changes
|
app.py
CHANGED
@@ -1,7 +1,125 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from app_settings import AppSettings
|
2 |
+
from utils import show_system_info
|
3 |
+
import constants
|
4 |
+
from argparse import ArgumentParser
|
5 |
+
from context import Context
|
6 |
+
from constants import APP_VERSION, LCM_DEFAULT_MODEL_OPENVINO
|
7 |
+
from models.interface_types import InterfaceType
|
8 |
+
from constants import DEVICE
|
9 |
|
10 |
+
parser = ArgumentParser(description=f"FAST SD CPU {constants.APP_VERSION}")
|
11 |
+
parser.add_argument(
|
12 |
+
"-s",
|
13 |
+
"--share",
|
14 |
+
action="store_true",
|
15 |
+
help="Create sharable link(Web UI)",
|
16 |
+
required=False,
|
17 |
+
)
|
18 |
+
group = parser.add_mutually_exclusive_group(required=False)
|
19 |
+
group.add_argument(
|
20 |
+
"-g",
|
21 |
+
"--gui",
|
22 |
+
action="store_true",
|
23 |
+
help="Start desktop GUI",
|
24 |
+
)
|
25 |
+
group.add_argument(
|
26 |
+
"-w",
|
27 |
+
"--webui",
|
28 |
+
action="store_true",
|
29 |
+
help="Start Web UI",
|
30 |
+
)
|
31 |
+
group.add_argument(
|
32 |
+
"-v",
|
33 |
+
"--version",
|
34 |
+
action="store_true",
|
35 |
+
help="Version",
|
36 |
+
)
|
37 |
+
parser.add_argument(
|
38 |
+
"--lcm_model_id",
|
39 |
+
type=str,
|
40 |
+
help="Model ID or path,Default SimianLuo/LCM_Dreamshaper_v7",
|
41 |
+
default="SimianLuo/LCM_Dreamshaper_v7",
|
42 |
+
)
|
43 |
+
parser.add_argument(
|
44 |
+
"--prompt",
|
45 |
+
type=str,
|
46 |
+
help="Describe the image you want to generate",
|
47 |
+
)
|
48 |
+
parser.add_argument(
|
49 |
+
"--image_height",
|
50 |
+
type=int,
|
51 |
+
help="Height of the image",
|
52 |
+
default=512,
|
53 |
+
)
|
54 |
+
parser.add_argument(
|
55 |
+
"--image_width",
|
56 |
+
type=int,
|
57 |
+
help="Width of the image",
|
58 |
+
default=512,
|
59 |
+
)
|
60 |
+
parser.add_argument(
|
61 |
+
"--inference_steps",
|
62 |
+
type=int,
|
63 |
+
help="Number of steps,default : 4",
|
64 |
+
default=4,
|
65 |
+
)
|
66 |
+
parser.add_argument(
|
67 |
+
"--guidance_scale",
|
68 |
+
type=int,
|
69 |
+
help="Guidance scale,default : 8.0",
|
70 |
+
default=8.0,
|
71 |
+
)
|
72 |
|
73 |
+
parser.add_argument(
|
74 |
+
"--number_of_images",
|
75 |
+
type=int,
|
76 |
+
help="Number of images to generate ,default : 1",
|
77 |
+
default=1,
|
78 |
+
)
|
79 |
+
parser.add_argument(
|
80 |
+
"--seed",
|
81 |
+
type=int,
|
82 |
+
help="Seed,default : -1 (disabled) ",
|
83 |
+
default=-1,
|
84 |
+
)
|
85 |
+
parser.add_argument(
|
86 |
+
"--use_openvino",
|
87 |
+
action="store_true",
|
88 |
+
help="Use OpenVINO model",
|
89 |
+
)
|
90 |
+
|
91 |
+
parser.add_argument(
|
92 |
+
"--use_offline_model",
|
93 |
+
action="store_true",
|
94 |
+
help="Use offline model",
|
95 |
+
)
|
96 |
+
parser.add_argument(
|
97 |
+
"--use_safety_checker",
|
98 |
+
action="store_false",
|
99 |
+
help="Use safety checker",
|
100 |
+
)
|
101 |
+
|
102 |
+
parser.add_argument(
|
103 |
+
"-i",
|
104 |
+
"--interactive",
|
105 |
+
action="store_true",
|
106 |
+
help="Interactive CLI mode",
|
107 |
+
)
|
108 |
+
|
109 |
+
args = parser.parse_args()
|
110 |
+
|
111 |
+
if args.version:
|
112 |
+
print(APP_VERSION)
|
113 |
+
exit()
|
114 |
+
|
115 |
+
parser.print_help()
|
116 |
+
show_system_info()
|
117 |
+
print(f"Using device : {constants.DEVICE}")
|
118 |
+
|
119 |
+
app_settings = AppSettings()
|
120 |
+
app_settings.load()
|
121 |
+
|
122 |
+
|
123 |
+
start_webui(
|
124 |
+
app_settings,
|
125 |
+
args.share,)
|
app_settings.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yaml
|
2 |
+
from os import path, makedirs
|
3 |
+
from models.settings import Settings
|
4 |
+
from paths import FastStableDiffusionPaths
|
5 |
+
|
6 |
+
|
7 |
+
class AppSettings:
|
8 |
+
def __init__(self):
|
9 |
+
self.config_path = FastStableDiffusionPaths().get_app_settings_path()
|
10 |
+
|
11 |
+
@property
|
12 |
+
def settings(self):
|
13 |
+
return self._config
|
14 |
+
|
15 |
+
def load(self):
|
16 |
+
if not path.exists(self.config_path):
|
17 |
+
base_dir = path.dirname(self.config_path)
|
18 |
+
if not path.exists(base_dir):
|
19 |
+
makedirs(base_dir)
|
20 |
+
try:
|
21 |
+
print("Settings not found creating default settings")
|
22 |
+
with open(self.config_path, "w") as file:
|
23 |
+
yaml.dump(
|
24 |
+
self._load_default(),
|
25 |
+
file,
|
26 |
+
)
|
27 |
+
except Exception as ex:
|
28 |
+
print(f"Error in creating settings : {ex}")
|
29 |
+
exit()
|
30 |
+
try:
|
31 |
+
with open(self.config_path) as file:
|
32 |
+
settings_dict = yaml.safe_load(file)
|
33 |
+
self._config = Settings.parse_obj(settings_dict)
|
34 |
+
except Exception as ex:
|
35 |
+
print(f"Error in loading settings : {ex}")
|
36 |
+
|
37 |
+
def save(self):
|
38 |
+
try:
|
39 |
+
with open(self.config_path, "w") as file:
|
40 |
+
yaml.dump(self._config.dict(), file)
|
41 |
+
except Exception as ex:
|
42 |
+
print(f"Error in saving settings : {ex}")
|
43 |
+
|
44 |
+
def _load_default(self) -> dict:
|
45 |
+
defult_config = Settings()
|
46 |
+
return defult_config.dict()
|
backend/__init__.py
ADDED
File without changes
|
backend/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (178 Bytes). View file
|
|
backend/__pycache__/image_saver.cpython-311.pyc
ADDED
Binary file (2.26 kB). View file
|
|
backend/__pycache__/lcm_text_to_image.cpython-311.pyc
ADDED
Binary file (4.72 kB). View file
|
|
backend/image_saver.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from os import path, mkdir
|
2 |
+
from typing import Any
|
3 |
+
from uuid import uuid4
|
4 |
+
from backend.models.lcmdiffusion_setting import LCMDiffusionSetting
|
5 |
+
import json
|
6 |
+
|
7 |
+
|
8 |
+
class ImageSaver:
|
9 |
+
@staticmethod
|
10 |
+
def save_images(
|
11 |
+
output_path: str,
|
12 |
+
images: Any,
|
13 |
+
folder_name: str = "",
|
14 |
+
format: str = ".png",
|
15 |
+
lcm_diffusion_setting: LCMDiffusionSetting = None,
|
16 |
+
) -> None:
|
17 |
+
gen_id = uuid4()
|
18 |
+
for index, image in enumerate(images):
|
19 |
+
if not path.exists(output_path):
|
20 |
+
mkdir(output_path)
|
21 |
+
|
22 |
+
if folder_name:
|
23 |
+
out_path = path.join(
|
24 |
+
output_path,
|
25 |
+
folder_name,
|
26 |
+
)
|
27 |
+
else:
|
28 |
+
out_path = output_path
|
29 |
+
|
30 |
+
if not path.exists(out_path):
|
31 |
+
mkdir(out_path)
|
32 |
+
image.save(path.join(out_path, f"{gen_id}-{index+1}{format}"))
|
33 |
+
if lcm_diffusion_setting:
|
34 |
+
with open(path.join(out_path, f"{gen_id}.json"), "w") as json_file:
|
35 |
+
json.dump(
|
36 |
+
lcm_diffusion_setting.model_dump(),
|
37 |
+
json_file,
|
38 |
+
indent=4,
|
39 |
+
)
|
backend/lcm_text_to_image.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
from diffusers import DiffusionPipeline
|
3 |
+
from os import path
|
4 |
+
import torch
|
5 |
+
from backend.models.lcmdiffusion_setting import LCMDiffusionSetting
|
6 |
+
import numpy as np
|
7 |
+
from constants import DEVICE
|
8 |
+
|
9 |
+
|
10 |
+
if DEVICE == "cpu":
|
11 |
+
from backend.lcmdiffusion.pipelines.openvino.lcm_ov_pipeline import (
|
12 |
+
OVLatentConsistencyModelPipeline,
|
13 |
+
)
|
14 |
+
from backend.lcmdiffusion.pipelines.openvino.lcm_scheduler import (
|
15 |
+
LCMScheduler,
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
class LCMTextToImage:
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
device: str = "cpu",
|
23 |
+
) -> None:
|
24 |
+
self.pipeline = None
|
25 |
+
self.use_openvino = False
|
26 |
+
self.device = None
|
27 |
+
self.previous_model_id = None
|
28 |
+
|
29 |
+
def _get_lcm_diffusion_pipeline_path(self) -> str:
|
30 |
+
script_path = path.dirname(path.abspath(__file__))
|
31 |
+
file_path = path.join(
|
32 |
+
script_path,
|
33 |
+
"lcmdiffusion",
|
34 |
+
"pipelines",
|
35 |
+
"latent_consistency_txt2img.py",
|
36 |
+
)
|
37 |
+
return file_path
|
38 |
+
|
39 |
+
def init(
|
40 |
+
self,
|
41 |
+
model_id: str,
|
42 |
+
use_openvino: bool = False,
|
43 |
+
device: str = "cpu",
|
44 |
+
use_local_model: bool = False,
|
45 |
+
) -> None:
|
46 |
+
self.device = device
|
47 |
+
self.use_openvino = use_openvino
|
48 |
+
if self.pipeline is None or self.previous_model_id != model_id:
|
49 |
+
if self.use_openvino and DEVICE == "cpu":
|
50 |
+
if self.pipeline:
|
51 |
+
del self.pipeline
|
52 |
+
scheduler = LCMScheduler.from_pretrained(
|
53 |
+
model_id,
|
54 |
+
subfolder="scheduler",
|
55 |
+
)
|
56 |
+
self.pipeline = OVLatentConsistencyModelPipeline.from_pretrained(
|
57 |
+
model_id,
|
58 |
+
scheduler=scheduler,
|
59 |
+
compile=False,
|
60 |
+
local_files_only=use_local_model,
|
61 |
+
)
|
62 |
+
else:
|
63 |
+
if self.pipeline:
|
64 |
+
del self.pipeline
|
65 |
+
|
66 |
+
self.pipeline = DiffusionPipeline.from_pretrained(
|
67 |
+
model_id,
|
68 |
+
custom_pipeline=self._get_lcm_diffusion_pipeline_path(),
|
69 |
+
custom_revision="main",
|
70 |
+
local_files_only=use_local_model,
|
71 |
+
)
|
72 |
+
self.pipeline.to(
|
73 |
+
torch_device=self.device,
|
74 |
+
torch_dtype=torch.float32,
|
75 |
+
)
|
76 |
+
self.previous_model_id = model_id
|
77 |
+
|
78 |
+
def generate(
|
79 |
+
self,
|
80 |
+
lcm_diffusion_setting: LCMDiffusionSetting,
|
81 |
+
reshape: bool = False,
|
82 |
+
) -> Any:
|
83 |
+
if lcm_diffusion_setting.use_seed:
|
84 |
+
cur_seed = lcm_diffusion_setting.seed
|
85 |
+
if self.use_openvino:
|
86 |
+
np.random.seed(cur_seed)
|
87 |
+
else:
|
88 |
+
torch.manual_seed(cur_seed)
|
89 |
+
|
90 |
+
if self.use_openvino and DEVICE == "cpu":
|
91 |
+
print("Using OpenVINO")
|
92 |
+
if reshape:
|
93 |
+
print("Reshape and compile")
|
94 |
+
self.pipeline.reshape(
|
95 |
+
batch_size=1,
|
96 |
+
height=lcm_diffusion_setting.image_height,
|
97 |
+
width=lcm_diffusion_setting.image_width,
|
98 |
+
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
|
99 |
+
)
|
100 |
+
self.pipeline.compile()
|
101 |
+
|
102 |
+
if not lcm_diffusion_setting.use_safety_checker:
|
103 |
+
self.pipeline.safety_checker = None
|
104 |
+
|
105 |
+
result_images = self.pipeline(
|
106 |
+
prompt=lcm_diffusion_setting.prompt,
|
107 |
+
num_inference_steps=lcm_diffusion_setting.inference_steps,
|
108 |
+
guidance_scale=lcm_diffusion_setting.guidance_scale,
|
109 |
+
width=lcm_diffusion_setting.image_width,
|
110 |
+
height=lcm_diffusion_setting.image_height,
|
111 |
+
output_type="pil",
|
112 |
+
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
|
113 |
+
).images
|
114 |
+
|
115 |
+
return result_images
|
backend/lcmdiffusion/pipelines/latent_consistency_txt2img.py
ADDED
@@ -0,0 +1,730 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Stanford University Team and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
|
16 |
+
# and https://github.com/hojonathanho/diffusion
|
17 |
+
|
18 |
+
import math
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
import torch
|
24 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
25 |
+
|
26 |
+
from diffusers import AutoencoderKL, ConfigMixin, DiffusionPipeline, SchedulerMixin, UNet2DConditionModel, logging
|
27 |
+
from diffusers.configuration_utils import register_to_config
|
28 |
+
from diffusers.image_processor import VaeImageProcessor
|
29 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
30 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
31 |
+
from diffusers.utils import BaseOutput
|
32 |
+
|
33 |
+
|
34 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
35 |
+
|
36 |
+
|
37 |
+
class LatentConsistencyModelPipeline(DiffusionPipeline):
|
38 |
+
_optional_components = ["scheduler"]
|
39 |
+
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
vae: AutoencoderKL,
|
43 |
+
text_encoder: CLIPTextModel,
|
44 |
+
tokenizer: CLIPTokenizer,
|
45 |
+
unet: UNet2DConditionModel,
|
46 |
+
scheduler: "LCMScheduler",
|
47 |
+
safety_checker: StableDiffusionSafetyChecker,
|
48 |
+
feature_extractor: CLIPImageProcessor,
|
49 |
+
requires_safety_checker: bool = True,
|
50 |
+
):
|
51 |
+
super().__init__()
|
52 |
+
|
53 |
+
scheduler = (
|
54 |
+
scheduler
|
55 |
+
if scheduler is not None
|
56 |
+
else LCMScheduler(
|
57 |
+
beta_start=0.00085, beta_end=0.0120, beta_schedule="scaled_linear", prediction_type="epsilon"
|
58 |
+
)
|
59 |
+
)
|
60 |
+
|
61 |
+
self.register_modules(
|
62 |
+
vae=vae,
|
63 |
+
text_encoder=text_encoder,
|
64 |
+
tokenizer=tokenizer,
|
65 |
+
unet=unet,
|
66 |
+
scheduler=scheduler,
|
67 |
+
safety_checker=safety_checker,
|
68 |
+
feature_extractor=feature_extractor,
|
69 |
+
)
|
70 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
71 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
72 |
+
|
73 |
+
def _encode_prompt(
|
74 |
+
self,
|
75 |
+
prompt,
|
76 |
+
device,
|
77 |
+
num_images_per_prompt,
|
78 |
+
prompt_embeds: None,
|
79 |
+
):
|
80 |
+
r"""
|
81 |
+
Encodes the prompt into text encoder hidden states.
|
82 |
+
Args:
|
83 |
+
prompt (`str` or `List[str]`, *optional*):
|
84 |
+
prompt to be encoded
|
85 |
+
device: (`torch.device`):
|
86 |
+
torch device
|
87 |
+
num_images_per_prompt (`int`):
|
88 |
+
number of images that should be generated per prompt
|
89 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
90 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
91 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
92 |
+
"""
|
93 |
+
|
94 |
+
if prompt is not None and isinstance(prompt, str):
|
95 |
+
pass
|
96 |
+
elif prompt is not None and isinstance(prompt, list):
|
97 |
+
len(prompt)
|
98 |
+
else:
|
99 |
+
prompt_embeds.shape[0]
|
100 |
+
|
101 |
+
if prompt_embeds is None:
|
102 |
+
text_inputs = self.tokenizer(
|
103 |
+
prompt,
|
104 |
+
padding="max_length",
|
105 |
+
max_length=self.tokenizer.model_max_length,
|
106 |
+
truncation=True,
|
107 |
+
return_tensors="pt",
|
108 |
+
)
|
109 |
+
text_input_ids = text_inputs.input_ids
|
110 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
111 |
+
|
112 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
113 |
+
text_input_ids, untruncated_ids
|
114 |
+
):
|
115 |
+
removed_text = self.tokenizer.batch_decode(
|
116 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
117 |
+
)
|
118 |
+
logger.warning(
|
119 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
120 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
121 |
+
)
|
122 |
+
|
123 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
124 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
125 |
+
else:
|
126 |
+
attention_mask = None
|
127 |
+
|
128 |
+
prompt_embeds = self.text_encoder(
|
129 |
+
text_input_ids.to(device),
|
130 |
+
attention_mask=attention_mask,
|
131 |
+
)
|
132 |
+
prompt_embeds = prompt_embeds[0]
|
133 |
+
|
134 |
+
if self.text_encoder is not None:
|
135 |
+
prompt_embeds_dtype = self.text_encoder.dtype
|
136 |
+
elif self.unet is not None:
|
137 |
+
prompt_embeds_dtype = self.unet.dtype
|
138 |
+
else:
|
139 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
140 |
+
|
141 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
142 |
+
|
143 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
144 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
145 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
146 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
147 |
+
|
148 |
+
# Don't need to get uncond prompt embedding because of LCM Guided Distillation
|
149 |
+
return prompt_embeds
|
150 |
+
|
151 |
+
def run_safety_checker(self, image, device, dtype):
|
152 |
+
if self.safety_checker is None:
|
153 |
+
has_nsfw_concept = None
|
154 |
+
else:
|
155 |
+
if torch.is_tensor(image):
|
156 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
157 |
+
else:
|
158 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
159 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
160 |
+
image, has_nsfw_concept = self.safety_checker(
|
161 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
162 |
+
)
|
163 |
+
return image, has_nsfw_concept
|
164 |
+
|
165 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, latents=None):
|
166 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
167 |
+
if latents is None:
|
168 |
+
latents = torch.randn(shape, dtype=dtype).to(device)
|
169 |
+
else:
|
170 |
+
latents = latents.to(device)
|
171 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
172 |
+
latents = latents * self.scheduler.init_noise_sigma
|
173 |
+
return latents
|
174 |
+
|
175 |
+
def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
176 |
+
"""
|
177 |
+
see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
178 |
+
Args:
|
179 |
+
timesteps: torch.Tensor: generate embedding vectors at these timesteps
|
180 |
+
embedding_dim: int: dimension of the embeddings to generate
|
181 |
+
dtype: data type of the generated embeddings
|
182 |
+
Returns:
|
183 |
+
embedding vectors with shape `(len(timesteps), embedding_dim)`
|
184 |
+
"""
|
185 |
+
assert len(w.shape) == 1
|
186 |
+
w = w * 1000.0
|
187 |
+
|
188 |
+
half_dim = embedding_dim // 2
|
189 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
190 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
191 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
192 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
193 |
+
if embedding_dim % 2 == 1: # zero pad
|
194 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
195 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
196 |
+
return emb
|
197 |
+
|
198 |
+
@torch.no_grad()
|
199 |
+
def __call__(
|
200 |
+
self,
|
201 |
+
prompt: Union[str, List[str]] = None,
|
202 |
+
height: Optional[int] = 768,
|
203 |
+
width: Optional[int] = 768,
|
204 |
+
guidance_scale: float = 7.5,
|
205 |
+
num_images_per_prompt: Optional[int] = 1,
|
206 |
+
latents: Optional[torch.FloatTensor] = None,
|
207 |
+
num_inference_steps: int = 4,
|
208 |
+
lcm_origin_steps: int = 50,
|
209 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
210 |
+
output_type: Optional[str] = "pil",
|
211 |
+
return_dict: bool = True,
|
212 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
213 |
+
):
|
214 |
+
# 0. Default height and width to unet
|
215 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
216 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
217 |
+
|
218 |
+
# 2. Define call parameters
|
219 |
+
if prompt is not None and isinstance(prompt, str):
|
220 |
+
batch_size = 1
|
221 |
+
elif prompt is not None and isinstance(prompt, list):
|
222 |
+
batch_size = len(prompt)
|
223 |
+
else:
|
224 |
+
batch_size = prompt_embeds.shape[0]
|
225 |
+
|
226 |
+
device = self._execution_device
|
227 |
+
# do_classifier_free_guidance = guidance_scale > 0.0 # In LCM Implementation: cfg_noise = noise_cond + cfg_scale * (noise_cond - noise_uncond) , (cfg_scale > 0.0 using CFG)
|
228 |
+
|
229 |
+
# 3. Encode input prompt
|
230 |
+
prompt_embeds = self._encode_prompt(
|
231 |
+
prompt,
|
232 |
+
device,
|
233 |
+
num_images_per_prompt,
|
234 |
+
prompt_embeds=prompt_embeds,
|
235 |
+
)
|
236 |
+
|
237 |
+
# 4. Prepare timesteps
|
238 |
+
self.scheduler.set_timesteps(num_inference_steps, lcm_origin_steps)
|
239 |
+
timesteps = self.scheduler.timesteps
|
240 |
+
|
241 |
+
# 5. Prepare latent variable
|
242 |
+
num_channels_latents = self.unet.config.in_channels
|
243 |
+
latents = self.prepare_latents(
|
244 |
+
batch_size * num_images_per_prompt,
|
245 |
+
num_channels_latents,
|
246 |
+
height,
|
247 |
+
width,
|
248 |
+
prompt_embeds.dtype,
|
249 |
+
device,
|
250 |
+
latents,
|
251 |
+
)
|
252 |
+
bs = batch_size * num_images_per_prompt
|
253 |
+
|
254 |
+
# 6. Get Guidance Scale Embedding
|
255 |
+
w = torch.tensor(guidance_scale).repeat(bs)
|
256 |
+
w_embedding = self.get_w_embedding(w, embedding_dim=256).to(device=device, dtype=latents.dtype)
|
257 |
+
|
258 |
+
# 7. LCM MultiStep Sampling Loop:
|
259 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
260 |
+
for i, t in enumerate(timesteps):
|
261 |
+
ts = torch.full((bs,), t, device=device, dtype=torch.long)
|
262 |
+
latents = latents.to(prompt_embeds.dtype)
|
263 |
+
|
264 |
+
# model prediction (v-prediction, eps, x)
|
265 |
+
model_pred = self.unet(
|
266 |
+
latents,
|
267 |
+
ts,
|
268 |
+
timestep_cond=w_embedding,
|
269 |
+
encoder_hidden_states=prompt_embeds,
|
270 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
271 |
+
return_dict=False,
|
272 |
+
)[0]
|
273 |
+
|
274 |
+
# compute the previous noisy sample x_t -> x_t-1
|
275 |
+
latents, denoised = self.scheduler.step(model_pred, i, t, latents, return_dict=False)
|
276 |
+
|
277 |
+
# # call the callback, if provided
|
278 |
+
# if i == len(timesteps) - 1:
|
279 |
+
progress_bar.update()
|
280 |
+
|
281 |
+
denoised = denoised.to(prompt_embeds.dtype)
|
282 |
+
if not output_type == "latent":
|
283 |
+
image = self.vae.decode(denoised / self.vae.config.scaling_factor, return_dict=False)[0]
|
284 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
285 |
+
else:
|
286 |
+
image = denoised
|
287 |
+
has_nsfw_concept = None
|
288 |
+
|
289 |
+
if has_nsfw_concept is None:
|
290 |
+
do_denormalize = [True] * image.shape[0]
|
291 |
+
else:
|
292 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
293 |
+
|
294 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
295 |
+
|
296 |
+
if not return_dict:
|
297 |
+
return (image, has_nsfw_concept)
|
298 |
+
|
299 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
300 |
+
|
301 |
+
|
302 |
+
@dataclass
|
303 |
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
|
304 |
+
class LCMSchedulerOutput(BaseOutput):
|
305 |
+
"""
|
306 |
+
Output class for the scheduler's `step` function output.
|
307 |
+
Args:
|
308 |
+
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
309 |
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
310 |
+
denoising loop.
|
311 |
+
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
312 |
+
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
313 |
+
`pred_original_sample` can be used to preview progress or for guidance.
|
314 |
+
"""
|
315 |
+
|
316 |
+
prev_sample: torch.FloatTensor
|
317 |
+
denoised: Optional[torch.FloatTensor] = None
|
318 |
+
|
319 |
+
|
320 |
+
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
321 |
+
def betas_for_alpha_bar(
|
322 |
+
num_diffusion_timesteps,
|
323 |
+
max_beta=0.999,
|
324 |
+
alpha_transform_type="cosine",
|
325 |
+
):
|
326 |
+
"""
|
327 |
+
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
328 |
+
(1-beta) over time from t = [0,1].
|
329 |
+
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
330 |
+
to that part of the diffusion process.
|
331 |
+
Args:
|
332 |
+
num_diffusion_timesteps (`int`): the number of betas to produce.
|
333 |
+
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
334 |
+
prevent singularities.
|
335 |
+
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
|
336 |
+
Choose from `cosine` or `exp`
|
337 |
+
Returns:
|
338 |
+
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
339 |
+
"""
|
340 |
+
if alpha_transform_type == "cosine":
|
341 |
+
|
342 |
+
def alpha_bar_fn(t):
|
343 |
+
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
|
344 |
+
|
345 |
+
elif alpha_transform_type == "exp":
|
346 |
+
|
347 |
+
def alpha_bar_fn(t):
|
348 |
+
return math.exp(t * -12.0)
|
349 |
+
|
350 |
+
else:
|
351 |
+
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
|
352 |
+
|
353 |
+
betas = []
|
354 |
+
for i in range(num_diffusion_timesteps):
|
355 |
+
t1 = i / num_diffusion_timesteps
|
356 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
357 |
+
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
|
358 |
+
return torch.tensor(betas, dtype=torch.float32)
|
359 |
+
|
360 |
+
|
361 |
+
def rescale_zero_terminal_snr(betas):
|
362 |
+
"""
|
363 |
+
Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
|
364 |
+
Args:
|
365 |
+
betas (`torch.FloatTensor`):
|
366 |
+
the betas that the scheduler is being initialized with.
|
367 |
+
Returns:
|
368 |
+
`torch.FloatTensor`: rescaled betas with zero terminal SNR
|
369 |
+
"""
|
370 |
+
# Convert betas to alphas_bar_sqrt
|
371 |
+
alphas = 1.0 - betas
|
372 |
+
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
373 |
+
alphas_bar_sqrt = alphas_cumprod.sqrt()
|
374 |
+
|
375 |
+
# Store old values.
|
376 |
+
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
|
377 |
+
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
|
378 |
+
|
379 |
+
# Shift so the last timestep is zero.
|
380 |
+
alphas_bar_sqrt -= alphas_bar_sqrt_T
|
381 |
+
|
382 |
+
# Scale so the first timestep is back to the old value.
|
383 |
+
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
|
384 |
+
|
385 |
+
# Convert alphas_bar_sqrt to betas
|
386 |
+
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
|
387 |
+
alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod
|
388 |
+
alphas = torch.cat([alphas_bar[0:1], alphas])
|
389 |
+
betas = 1 - alphas
|
390 |
+
|
391 |
+
return betas
|
392 |
+
|
393 |
+
|
394 |
+
class LCMScheduler(SchedulerMixin, ConfigMixin):
|
395 |
+
"""
|
396 |
+
`LCMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
|
397 |
+
non-Markovian guidance.
|
398 |
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
399 |
+
methods the library implements for all schedulers such as loading and saving.
|
400 |
+
Args:
|
401 |
+
num_train_timesteps (`int`, defaults to 1000):
|
402 |
+
The number of diffusion steps to train the model.
|
403 |
+
beta_start (`float`, defaults to 0.0001):
|
404 |
+
The starting `beta` value of inference.
|
405 |
+
beta_end (`float`, defaults to 0.02):
|
406 |
+
The final `beta` value.
|
407 |
+
beta_schedule (`str`, defaults to `"linear"`):
|
408 |
+
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
409 |
+
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
410 |
+
trained_betas (`np.ndarray`, *optional*):
|
411 |
+
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
412 |
+
clip_sample (`bool`, defaults to `True`):
|
413 |
+
Clip the predicted sample for numerical stability.
|
414 |
+
clip_sample_range (`float`, defaults to 1.0):
|
415 |
+
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
|
416 |
+
set_alpha_to_one (`bool`, defaults to `True`):
|
417 |
+
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
|
418 |
+
there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
|
419 |
+
otherwise it uses the alpha value at step 0.
|
420 |
+
steps_offset (`int`, defaults to 0):
|
421 |
+
An offset added to the inference steps. You can use a combination of `offset=1` and
|
422 |
+
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
|
423 |
+
Diffusion.
|
424 |
+
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
425 |
+
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
426 |
+
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
427 |
+
Video](https://imagen.research.google/video/paper.pdf) paper).
|
428 |
+
thresholding (`bool`, defaults to `False`):
|
429 |
+
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
|
430 |
+
as Stable Diffusion.
|
431 |
+
dynamic_thresholding_ratio (`float`, defaults to 0.995):
|
432 |
+
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
|
433 |
+
sample_max_value (`float`, defaults to 1.0):
|
434 |
+
The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
|
435 |
+
timestep_spacing (`str`, defaults to `"leading"`):
|
436 |
+
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
437 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
438 |
+
rescale_betas_zero_snr (`bool`, defaults to `False`):
|
439 |
+
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
|
440 |
+
dark samples instead of limiting it to samples with medium brightness. Loosely related to
|
441 |
+
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
|
442 |
+
"""
|
443 |
+
|
444 |
+
# _compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
445 |
+
order = 1
|
446 |
+
|
447 |
+
@register_to_config
|
448 |
+
def __init__(
|
449 |
+
self,
|
450 |
+
num_train_timesteps: int = 1000,
|
451 |
+
beta_start: float = 0.0001,
|
452 |
+
beta_end: float = 0.02,
|
453 |
+
beta_schedule: str = "linear",
|
454 |
+
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
455 |
+
clip_sample: bool = True,
|
456 |
+
set_alpha_to_one: bool = True,
|
457 |
+
steps_offset: int = 0,
|
458 |
+
prediction_type: str = "epsilon",
|
459 |
+
thresholding: bool = False,
|
460 |
+
dynamic_thresholding_ratio: float = 0.995,
|
461 |
+
clip_sample_range: float = 1.0,
|
462 |
+
sample_max_value: float = 1.0,
|
463 |
+
timestep_spacing: str = "leading",
|
464 |
+
rescale_betas_zero_snr: bool = False,
|
465 |
+
):
|
466 |
+
if trained_betas is not None:
|
467 |
+
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
468 |
+
elif beta_schedule == "linear":
|
469 |
+
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
470 |
+
elif beta_schedule == "scaled_linear":
|
471 |
+
# this schedule is very specific to the latent diffusion model.
|
472 |
+
self.betas = (
|
473 |
+
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
474 |
+
)
|
475 |
+
elif beta_schedule == "squaredcos_cap_v2":
|
476 |
+
# Glide cosine schedule
|
477 |
+
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
478 |
+
else:
|
479 |
+
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
480 |
+
|
481 |
+
# Rescale for zero SNR
|
482 |
+
if rescale_betas_zero_snr:
|
483 |
+
self.betas = rescale_zero_terminal_snr(self.betas)
|
484 |
+
|
485 |
+
self.alphas = 1.0 - self.betas
|
486 |
+
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
487 |
+
|
488 |
+
# At every step in ddim, we are looking into the previous alphas_cumprod
|
489 |
+
# For the final step, there is no previous alphas_cumprod because we are already at 0
|
490 |
+
# `set_alpha_to_one` decides whether we set this parameter simply to one or
|
491 |
+
# whether we use the final alpha of the "non-previous" one.
|
492 |
+
self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
|
493 |
+
|
494 |
+
# standard deviation of the initial noise distribution
|
495 |
+
self.init_noise_sigma = 1.0
|
496 |
+
|
497 |
+
# setable values
|
498 |
+
self.num_inference_steps = None
|
499 |
+
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
|
500 |
+
|
501 |
+
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
|
502 |
+
"""
|
503 |
+
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
504 |
+
current timestep.
|
505 |
+
Args:
|
506 |
+
sample (`torch.FloatTensor`):
|
507 |
+
The input sample.
|
508 |
+
timestep (`int`, *optional*):
|
509 |
+
The current timestep in the diffusion chain.
|
510 |
+
Returns:
|
511 |
+
`torch.FloatTensor`:
|
512 |
+
A scaled input sample.
|
513 |
+
"""
|
514 |
+
return sample
|
515 |
+
|
516 |
+
def _get_variance(self, timestep, prev_timestep):
|
517 |
+
alpha_prod_t = self.alphas_cumprod[timestep]
|
518 |
+
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
519 |
+
beta_prod_t = 1 - alpha_prod_t
|
520 |
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
521 |
+
|
522 |
+
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
|
523 |
+
|
524 |
+
return variance
|
525 |
+
|
526 |
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
527 |
+
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
528 |
+
"""
|
529 |
+
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
530 |
+
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
531 |
+
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
|
532 |
+
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
533 |
+
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
534 |
+
https://arxiv.org/abs/2205.11487
|
535 |
+
"""
|
536 |
+
dtype = sample.dtype
|
537 |
+
batch_size, channels, height, width = sample.shape
|
538 |
+
|
539 |
+
if dtype not in (torch.float32, torch.float64):
|
540 |
+
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
|
541 |
+
|
542 |
+
# Flatten sample for doing quantile calculation along each image
|
543 |
+
sample = sample.reshape(batch_size, channels * height * width)
|
544 |
+
|
545 |
+
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
546 |
+
|
547 |
+
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
|
548 |
+
s = torch.clamp(
|
549 |
+
s, min=1, max=self.config.sample_max_value
|
550 |
+
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
551 |
+
|
552 |
+
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
|
553 |
+
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
|
554 |
+
|
555 |
+
sample = sample.reshape(batch_size, channels, height, width)
|
556 |
+
sample = sample.to(dtype)
|
557 |
+
|
558 |
+
return sample
|
559 |
+
|
560 |
+
def set_timesteps(self, num_inference_steps: int, lcm_origin_steps: int, device: Union[str, torch.device] = None):
|
561 |
+
"""
|
562 |
+
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
563 |
+
Args:
|
564 |
+
num_inference_steps (`int`):
|
565 |
+
The number of diffusion steps used when generating samples with a pre-trained model.
|
566 |
+
"""
|
567 |
+
|
568 |
+
if num_inference_steps > self.config.num_train_timesteps:
|
569 |
+
raise ValueError(
|
570 |
+
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
571 |
+
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
572 |
+
f" maximal {self.config.num_train_timesteps} timesteps."
|
573 |
+
)
|
574 |
+
|
575 |
+
self.num_inference_steps = num_inference_steps
|
576 |
+
|
577 |
+
# LCM Timesteps Setting: # Linear Spacing
|
578 |
+
c = self.config.num_train_timesteps // lcm_origin_steps
|
579 |
+
lcm_origin_timesteps = np.asarray(list(range(1, lcm_origin_steps + 1))) * c - 1 # LCM Training Steps Schedule
|
580 |
+
skipping_step = len(lcm_origin_timesteps) // num_inference_steps
|
581 |
+
timesteps = lcm_origin_timesteps[::-skipping_step][:num_inference_steps] # LCM Inference Steps Schedule
|
582 |
+
|
583 |
+
self.timesteps = torch.from_numpy(timesteps.copy()).to(device)
|
584 |
+
|
585 |
+
def get_scalings_for_boundary_condition_discrete(self, t):
|
586 |
+
self.sigma_data = 0.5 # Default: 0.5
|
587 |
+
|
588 |
+
# By dividing 0.1: This is almost a delta function at t=0.
|
589 |
+
c_skip = self.sigma_data**2 / ((t / 0.1) ** 2 + self.sigma_data**2)
|
590 |
+
c_out = (t / 0.1) / ((t / 0.1) ** 2 + self.sigma_data**2) ** 0.5
|
591 |
+
return c_skip, c_out
|
592 |
+
|
593 |
+
def step(
|
594 |
+
self,
|
595 |
+
model_output: torch.FloatTensor,
|
596 |
+
timeindex: int,
|
597 |
+
timestep: int,
|
598 |
+
sample: torch.FloatTensor,
|
599 |
+
eta: float = 0.0,
|
600 |
+
use_clipped_model_output: bool = False,
|
601 |
+
generator=None,
|
602 |
+
variance_noise: Optional[torch.FloatTensor] = None,
|
603 |
+
return_dict: bool = True,
|
604 |
+
) -> Union[LCMSchedulerOutput, Tuple]:
|
605 |
+
"""
|
606 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
607 |
+
process from the learned model outputs (most often the predicted noise).
|
608 |
+
Args:
|
609 |
+
model_output (`torch.FloatTensor`):
|
610 |
+
The direct output from learned diffusion model.
|
611 |
+
timestep (`float`):
|
612 |
+
The current discrete timestep in the diffusion chain.
|
613 |
+
sample (`torch.FloatTensor`):
|
614 |
+
A current instance of a sample created by the diffusion process.
|
615 |
+
eta (`float`):
|
616 |
+
The weight of noise for added noise in diffusion step.
|
617 |
+
use_clipped_model_output (`bool`, defaults to `False`):
|
618 |
+
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
|
619 |
+
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
|
620 |
+
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
|
621 |
+
`use_clipped_model_output` has no effect.
|
622 |
+
generator (`torch.Generator`, *optional*):
|
623 |
+
A random number generator.
|
624 |
+
variance_noise (`torch.FloatTensor`):
|
625 |
+
Alternative to generating noise with `generator` by directly providing the noise for the variance
|
626 |
+
itself. Useful for methods such as [`CycleDiffusion`].
|
627 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
628 |
+
Whether or not to return a [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] or `tuple`.
|
629 |
+
Returns:
|
630 |
+
[`~schedulers.scheduling_utils.LCMSchedulerOutput`] or `tuple`:
|
631 |
+
If return_dict is `True`, [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] is returned, otherwise a
|
632 |
+
tuple is returned where the first element is the sample tensor.
|
633 |
+
"""
|
634 |
+
if self.num_inference_steps is None:
|
635 |
+
raise ValueError(
|
636 |
+
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
637 |
+
)
|
638 |
+
|
639 |
+
# 1. get previous step value
|
640 |
+
prev_timeindex = timeindex + 1
|
641 |
+
if prev_timeindex < len(self.timesteps):
|
642 |
+
prev_timestep = self.timesteps[prev_timeindex]
|
643 |
+
else:
|
644 |
+
prev_timestep = timestep
|
645 |
+
|
646 |
+
# 2. compute alphas, betas
|
647 |
+
alpha_prod_t = self.alphas_cumprod[timestep]
|
648 |
+
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
649 |
+
|
650 |
+
beta_prod_t = 1 - alpha_prod_t
|
651 |
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
652 |
+
|
653 |
+
# 3. Get scalings for boundary conditions
|
654 |
+
c_skip, c_out = self.get_scalings_for_boundary_condition_discrete(timestep)
|
655 |
+
|
656 |
+
# 4. Different Parameterization:
|
657 |
+
parameterization = self.config.prediction_type
|
658 |
+
|
659 |
+
if parameterization == "epsilon": # noise-prediction
|
660 |
+
pred_x0 = (sample - beta_prod_t.sqrt() * model_output) / alpha_prod_t.sqrt()
|
661 |
+
|
662 |
+
elif parameterization == "sample": # x-prediction
|
663 |
+
pred_x0 = model_output
|
664 |
+
|
665 |
+
elif parameterization == "v_prediction": # v-prediction
|
666 |
+
pred_x0 = alpha_prod_t.sqrt() * sample - beta_prod_t.sqrt() * model_output
|
667 |
+
|
668 |
+
# 4. Denoise model output using boundary conditions
|
669 |
+
denoised = c_out * pred_x0 + c_skip * sample
|
670 |
+
|
671 |
+
# 5. Sample z ~ N(0, I), For MultiStep Inference
|
672 |
+
# Noise is not used for one-step sampling.
|
673 |
+
if len(self.timesteps) > 1:
|
674 |
+
noise = torch.randn(model_output.shape).to(model_output.device)
|
675 |
+
prev_sample = alpha_prod_t_prev.sqrt() * denoised + beta_prod_t_prev.sqrt() * noise
|
676 |
+
else:
|
677 |
+
prev_sample = denoised
|
678 |
+
|
679 |
+
if not return_dict:
|
680 |
+
return (prev_sample, denoised)
|
681 |
+
|
682 |
+
return LCMSchedulerOutput(prev_sample=prev_sample, denoised=denoised)
|
683 |
+
|
684 |
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
|
685 |
+
def add_noise(
|
686 |
+
self,
|
687 |
+
original_samples: torch.FloatTensor,
|
688 |
+
noise: torch.FloatTensor,
|
689 |
+
timesteps: torch.IntTensor,
|
690 |
+
) -> torch.FloatTensor:
|
691 |
+
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
692 |
+
alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
|
693 |
+
timesteps = timesteps.to(original_samples.device)
|
694 |
+
|
695 |
+
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
696 |
+
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
697 |
+
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
698 |
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
699 |
+
|
700 |
+
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
701 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
702 |
+
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
703 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
704 |
+
|
705 |
+
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
706 |
+
return noisy_samples
|
707 |
+
|
708 |
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
|
709 |
+
def get_velocity(
|
710 |
+
self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
|
711 |
+
) -> torch.FloatTensor:
|
712 |
+
# Make sure alphas_cumprod and timestep have same device and dtype as sample
|
713 |
+
alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
|
714 |
+
timesteps = timesteps.to(sample.device)
|
715 |
+
|
716 |
+
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
717 |
+
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
718 |
+
while len(sqrt_alpha_prod.shape) < len(sample.shape):
|
719 |
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
720 |
+
|
721 |
+
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
722 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
723 |
+
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
|
724 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
725 |
+
|
726 |
+
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
|
727 |
+
return velocity
|
728 |
+
|
729 |
+
def __len__(self):
|
730 |
+
return self.config.num_train_timesteps
|
backend/lcmdiffusion/pipelines/openvino/__pycache__/lcm_ov_pipeline.cpython-311.pyc
ADDED
Binary file (21.5 kB). View file
|
|
backend/lcmdiffusion/pipelines/openvino/__pycache__/lcm_scheduler.cpython-311.pyc
ADDED
Binary file (26.5 kB). View file
|
|
backend/lcmdiffusion/pipelines/openvino/lcm_ov_pipeline.py
ADDED
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://huggingface.co/deinferno/LCM_Dreamshaper_v7-openvino
|
2 |
+
|
3 |
+
import inspect
|
4 |
+
|
5 |
+
from pathlib import Path
|
6 |
+
from tempfile import TemporaryDirectory
|
7 |
+
from typing import List, Optional, Tuple, Union, Dict, Any, Callable, OrderedDict
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import openvino
|
11 |
+
import torch
|
12 |
+
|
13 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
14 |
+
from optimum.intel.openvino.modeling_diffusion import OVStableDiffusionPipeline, OVModelUnet, OVModelVaeDecoder, OVModelTextEncoder, OVModelVaeEncoder, VaeImageProcessor
|
15 |
+
from optimum.utils import (
|
16 |
+
DIFFUSION_MODEL_TEXT_ENCODER_2_SUBFOLDER,
|
17 |
+
DIFFUSION_MODEL_TEXT_ENCODER_SUBFOLDER,
|
18 |
+
DIFFUSION_MODEL_UNET_SUBFOLDER,
|
19 |
+
DIFFUSION_MODEL_VAE_DECODER_SUBFOLDER,
|
20 |
+
DIFFUSION_MODEL_VAE_ENCODER_SUBFOLDER,
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
from diffusers import logging
|
25 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
26 |
+
|
27 |
+
class LCMOVModelUnet(OVModelUnet):
|
28 |
+
def __call__(
|
29 |
+
self,
|
30 |
+
sample: np.ndarray,
|
31 |
+
timestep: np.ndarray,
|
32 |
+
encoder_hidden_states: np.ndarray,
|
33 |
+
timestep_cond: Optional[np.ndarray] = None,
|
34 |
+
text_embeds: Optional[np.ndarray] = None,
|
35 |
+
time_ids: Optional[np.ndarray] = None,
|
36 |
+
):
|
37 |
+
self._compile()
|
38 |
+
|
39 |
+
inputs = {
|
40 |
+
"sample": sample,
|
41 |
+
"timestep": timestep,
|
42 |
+
"encoder_hidden_states": encoder_hidden_states,
|
43 |
+
}
|
44 |
+
|
45 |
+
if timestep_cond is not None:
|
46 |
+
inputs["timestep_cond"] = timestep_cond
|
47 |
+
if text_embeds is not None:
|
48 |
+
inputs["text_embeds"] = text_embeds
|
49 |
+
if time_ids is not None:
|
50 |
+
inputs["time_ids"] = time_ids
|
51 |
+
|
52 |
+
outputs = self.request(inputs, shared_memory=True)
|
53 |
+
return list(outputs.values())
|
54 |
+
|
55 |
+
class OVLatentConsistencyModelPipeline(OVStableDiffusionPipeline):
|
56 |
+
|
57 |
+
def __init__(
|
58 |
+
self,
|
59 |
+
vae_decoder: openvino.runtime.Model,
|
60 |
+
text_encoder: openvino.runtime.Model,
|
61 |
+
unet: openvino.runtime.Model,
|
62 |
+
config: Dict[str, Any],
|
63 |
+
tokenizer: "CLIPTokenizer",
|
64 |
+
scheduler: Union["DDIMScheduler", "PNDMScheduler", "LMSDiscreteScheduler"],
|
65 |
+
feature_extractor: Optional["CLIPFeatureExtractor"] = None,
|
66 |
+
vae_encoder: Optional[openvino.runtime.Model] = None,
|
67 |
+
text_encoder_2: Optional[openvino.runtime.Model] = None,
|
68 |
+
tokenizer_2: Optional["CLIPTokenizer"] = None,
|
69 |
+
device: str = "CPU",
|
70 |
+
dynamic_shapes: bool = True,
|
71 |
+
compile: bool = True,
|
72 |
+
ov_config: Optional[Dict[str, str]] = None,
|
73 |
+
model_save_dir: Optional[Union[str, Path, TemporaryDirectory]] = None,
|
74 |
+
**kwargs,
|
75 |
+
):
|
76 |
+
self._internal_dict = config
|
77 |
+
self._device = device.upper()
|
78 |
+
self.is_dynamic = dynamic_shapes
|
79 |
+
self.ov_config = ov_config if ov_config is not None else {}
|
80 |
+
self._model_save_dir = (
|
81 |
+
Path(model_save_dir.name) if isinstance(model_save_dir, TemporaryDirectory) else model_save_dir
|
82 |
+
)
|
83 |
+
self.vae_decoder = OVModelVaeDecoder(vae_decoder, self)
|
84 |
+
self.unet = LCMOVModelUnet(unet, self)
|
85 |
+
self.text_encoder = OVModelTextEncoder(text_encoder, self) if text_encoder is not None else None
|
86 |
+
self.text_encoder_2 = (
|
87 |
+
OVModelTextEncoder(text_encoder_2, self, model_name=DIFFUSION_MODEL_TEXT_ENCODER_2_SUBFOLDER)
|
88 |
+
if text_encoder_2 is not None
|
89 |
+
else None
|
90 |
+
)
|
91 |
+
self.vae_encoder = OVModelVaeEncoder(vae_encoder, self) if vae_encoder is not None else None
|
92 |
+
|
93 |
+
if "block_out_channels" in self.vae_decoder.config:
|
94 |
+
self.vae_scale_factor = 2 ** (len(self.vae_decoder.config["block_out_channels"]) - 1)
|
95 |
+
else:
|
96 |
+
self.vae_scale_factor = 8
|
97 |
+
|
98 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
99 |
+
|
100 |
+
self.tokenizer = tokenizer
|
101 |
+
self.tokenizer_2 = tokenizer_2
|
102 |
+
self.scheduler = scheduler
|
103 |
+
self.feature_extractor = feature_extractor
|
104 |
+
self.safety_checker = None
|
105 |
+
self.preprocessors = []
|
106 |
+
|
107 |
+
if self.is_dynamic:
|
108 |
+
self.reshape(batch_size=-1, height=-1, width=-1, num_images_per_prompt=-1)
|
109 |
+
|
110 |
+
if compile:
|
111 |
+
self.compile()
|
112 |
+
|
113 |
+
sub_models = {
|
114 |
+
DIFFUSION_MODEL_TEXT_ENCODER_SUBFOLDER: self.text_encoder,
|
115 |
+
DIFFUSION_MODEL_UNET_SUBFOLDER: self.unet,
|
116 |
+
DIFFUSION_MODEL_VAE_DECODER_SUBFOLDER: self.vae_decoder,
|
117 |
+
DIFFUSION_MODEL_VAE_ENCODER_SUBFOLDER: self.vae_encoder,
|
118 |
+
DIFFUSION_MODEL_TEXT_ENCODER_2_SUBFOLDER: self.text_encoder_2,
|
119 |
+
}
|
120 |
+
for name in sub_models.keys():
|
121 |
+
self._internal_dict[name] = (
|
122 |
+
("optimum", sub_models[name].__class__.__name__) if sub_models[name] is not None else (None, None)
|
123 |
+
)
|
124 |
+
|
125 |
+
self._internal_dict.pop("vae", None)
|
126 |
+
|
127 |
+
def _reshape_unet(
|
128 |
+
self,
|
129 |
+
model: openvino.runtime.Model,
|
130 |
+
batch_size: int = -1,
|
131 |
+
height: int = -1,
|
132 |
+
width: int = -1,
|
133 |
+
num_images_per_prompt: int = -1,
|
134 |
+
tokenizer_max_length: int = -1,
|
135 |
+
):
|
136 |
+
if batch_size == -1 or num_images_per_prompt == -1:
|
137 |
+
batch_size = -1
|
138 |
+
else:
|
139 |
+
batch_size = batch_size * num_images_per_prompt
|
140 |
+
|
141 |
+
height = height // self.vae_scale_factor if height > 0 else height
|
142 |
+
width = width // self.vae_scale_factor if width > 0 else width
|
143 |
+
shapes = {}
|
144 |
+
for inputs in model.inputs:
|
145 |
+
shapes[inputs] = inputs.get_partial_shape()
|
146 |
+
if inputs.get_any_name() == "timestep":
|
147 |
+
shapes[inputs][0] = 1
|
148 |
+
elif inputs.get_any_name() == "sample":
|
149 |
+
in_channels = self.unet.config.get("in_channels", None)
|
150 |
+
if in_channels is None:
|
151 |
+
in_channels = shapes[inputs][1]
|
152 |
+
if in_channels.is_dynamic:
|
153 |
+
logger.warning(
|
154 |
+
"Could not identify `in_channels` from the unet configuration, to statically reshape the unet please provide a configuration."
|
155 |
+
)
|
156 |
+
self.is_dynamic = True
|
157 |
+
|
158 |
+
shapes[inputs] = [batch_size, in_channels, height, width]
|
159 |
+
elif inputs.get_any_name() == "timestep_cond":
|
160 |
+
shapes[inputs] = [batch_size, inputs.get_partial_shape()[1]]
|
161 |
+
elif inputs.get_any_name() == "text_embeds":
|
162 |
+
shapes[inputs] = [batch_size, self.text_encoder_2.config["projection_dim"]]
|
163 |
+
elif inputs.get_any_name() == "time_ids":
|
164 |
+
shapes[inputs] = [batch_size, inputs.get_partial_shape()[1]]
|
165 |
+
else:
|
166 |
+
shapes[inputs][0] = batch_size
|
167 |
+
shapes[inputs][1] = tokenizer_max_length
|
168 |
+
model.reshape(shapes)
|
169 |
+
return model
|
170 |
+
|
171 |
+
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=np.float32):
|
172 |
+
"""
|
173 |
+
see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
174 |
+
Args:
|
175 |
+
timesteps: np.array: generate embedding vectors at these timesteps
|
176 |
+
embedding_dim: int: dimension of the embeddings to generate
|
177 |
+
dtype: data type of the generated embeddings
|
178 |
+
|
179 |
+
Returns:
|
180 |
+
embedding vectors with shape `(len(timesteps), embedding_dim)`
|
181 |
+
"""
|
182 |
+
assert len(w.shape) == 1
|
183 |
+
w = w * 1000.
|
184 |
+
|
185 |
+
half_dim = embedding_dim // 2
|
186 |
+
emb = np.log(np.array(10000.)) / (half_dim - 1)
|
187 |
+
emb = np.exp(np.arange(half_dim, dtype=dtype) * -emb)
|
188 |
+
emb = w.astype(dtype)[:, None] * emb[None, :]
|
189 |
+
emb = np.concatenate([np.sin(emb), np.cos(emb)], axis=1)
|
190 |
+
if embedding_dim % 2 == 1: # zero pad
|
191 |
+
emb = np.pad(emb, (0, 1))
|
192 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
193 |
+
return emb
|
194 |
+
|
195 |
+
# Adapted from https://github.com/huggingface/optimum/blob/15b8d1eed4d83c5004d3b60f6b6f13744b358f01/optimum/pipelines/diffusers/pipeline_stable_diffusion.py#L201
|
196 |
+
def __call__(
|
197 |
+
self,
|
198 |
+
prompt: Optional[Union[str, List[str]]] = None,
|
199 |
+
height: Optional[int] = None,
|
200 |
+
width: Optional[int] = None,
|
201 |
+
num_inference_steps: int = 4,
|
202 |
+
original_inference_steps: int = None,
|
203 |
+
guidance_scale: float = 7.5,
|
204 |
+
num_images_per_prompt: int = 1,
|
205 |
+
eta: float = 0.0,
|
206 |
+
generator: Optional[np.random.RandomState] = None,
|
207 |
+
latents: Optional[np.ndarray] = None,
|
208 |
+
prompt_embeds: Optional[np.ndarray] = None,
|
209 |
+
output_type: str = "pil",
|
210 |
+
return_dict: bool = True,
|
211 |
+
callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
|
212 |
+
callback_steps: int = 1,
|
213 |
+
guidance_rescale: float = 0.0,
|
214 |
+
):
|
215 |
+
r"""
|
216 |
+
Function invoked when calling the pipeline for generation.
|
217 |
+
|
218 |
+
Args:
|
219 |
+
prompt (`Optional[Union[str, List[str]]]`, defaults to None):
|
220 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
221 |
+
instead.
|
222 |
+
height (`Optional[int]`, defaults to None):
|
223 |
+
The height in pixels of the generated image.
|
224 |
+
width (`Optional[int]`, defaults to None):
|
225 |
+
The width in pixels of the generated image.
|
226 |
+
num_inference_steps (`int`, defaults to 4):
|
227 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
228 |
+
expense of slower inference.
|
229 |
+
original_inference_steps (`int`, *optional*):
|
230 |
+
The original number of inference steps use to generate a linearly-spaced timestep schedule, from which
|
231 |
+
we will draw `num_inference_steps` evenly spaced timesteps from as our final timestep schedule,
|
232 |
+
following the Skipping-Step method in the paper (see Section 4.3). If not set this will default to the
|
233 |
+
scheduler's `original_inference_steps` attribute.
|
234 |
+
guidance_scale (`float`, defaults to 7.5):
|
235 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
236 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
237 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
238 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
239 |
+
usually at the expense of lower image quality.
|
240 |
+
num_images_per_prompt (`int`, defaults to 1):
|
241 |
+
The number of images to generate per prompt.
|
242 |
+
eta (`float`, defaults to 0.0):
|
243 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
244 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
245 |
+
generator (`Optional[np.random.RandomState]`, defaults to `None`)::
|
246 |
+
A np.random.RandomState to make generation deterministic.
|
247 |
+
latents (`Optional[np.ndarray]`, defaults to `None`):
|
248 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
249 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
250 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
251 |
+
prompt_embeds (`Optional[np.ndarray]`, defaults to `None`):
|
252 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
253 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
254 |
+
output_type (`str`, defaults to `"pil"`):
|
255 |
+
The output format of the generate image. Choose between
|
256 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
257 |
+
return_dict (`bool`, defaults to `True`):
|
258 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
259 |
+
plain tuple.
|
260 |
+
callback (Optional[Callable], defaults to `None`):
|
261 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
262 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
263 |
+
callback_steps (`int`, defaults to 1):
|
264 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
265 |
+
called at every step.
|
266 |
+
guidance_rescale (`float`, defaults to 0.0):
|
267 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
268 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
269 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
270 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
271 |
+
|
272 |
+
Returns:
|
273 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
274 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
275 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
276 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
277 |
+
(nsfw) content, according to the `safety_checker`.
|
278 |
+
"""
|
279 |
+
height = height or self.unet.config.get("sample_size", 64) * self.vae_scale_factor
|
280 |
+
width = width or self.unet.config.get("sample_size", 64) * self.vae_scale_factor
|
281 |
+
|
282 |
+
# check inputs. Raise error if not correct
|
283 |
+
self.check_inputs(
|
284 |
+
prompt, height, width, callback_steps, None, prompt_embeds, None
|
285 |
+
)
|
286 |
+
|
287 |
+
# define call parameters
|
288 |
+
if isinstance(prompt, str):
|
289 |
+
batch_size = 1
|
290 |
+
elif isinstance(prompt, list):
|
291 |
+
batch_size = len(prompt)
|
292 |
+
else:
|
293 |
+
batch_size = prompt_embeds.shape[0]
|
294 |
+
|
295 |
+
if generator is None:
|
296 |
+
generator = np.random
|
297 |
+
|
298 |
+
# Create torch.Generator instance with same state as np.random.RandomState
|
299 |
+
torch_generator = torch.Generator().manual_seed(int(generator.get_state()[1][0]))
|
300 |
+
|
301 |
+
#do_classifier_free_guidance = guidance_scale > 1.0
|
302 |
+
|
303 |
+
# NOTE: when a LCM is distilled from an LDM via latent consistency distillation (Algorithm 1) with guided
|
304 |
+
# distillation, the forward pass of the LCM learns to approximate sampling from the LDM using CFG with the
|
305 |
+
# unconditional prompt "" (the empty string). Due to this, LCMs currently do not support negative prompts.
|
306 |
+
prompt_embeds = self._encode_prompt(
|
307 |
+
prompt,
|
308 |
+
num_images_per_prompt,
|
309 |
+
False,
|
310 |
+
negative_prompt=None,
|
311 |
+
prompt_embeds=prompt_embeds,
|
312 |
+
negative_prompt_embeds=None,
|
313 |
+
)
|
314 |
+
|
315 |
+
# set timesteps
|
316 |
+
self.scheduler.set_timesteps(num_inference_steps, "cpu", original_inference_steps=original_inference_steps)
|
317 |
+
timesteps = self.scheduler.timesteps
|
318 |
+
|
319 |
+
latents = self.prepare_latents(
|
320 |
+
batch_size * num_images_per_prompt,
|
321 |
+
self.unet.config.get("in_channels", 4),
|
322 |
+
height,
|
323 |
+
width,
|
324 |
+
prompt_embeds.dtype,
|
325 |
+
generator,
|
326 |
+
latents,
|
327 |
+
)
|
328 |
+
|
329 |
+
# Get Guidance Scale Embedding
|
330 |
+
w = np.tile(guidance_scale - 1, batch_size * num_images_per_prompt)
|
331 |
+
w_embedding = self.get_guidance_scale_embedding(w, embedding_dim=self.unet.config.get("time_cond_proj_dim", 256))
|
332 |
+
|
333 |
+
# Adapted from diffusers to extend it for other runtimes than ORT
|
334 |
+
timestep_dtype = self.unet.input_dtype.get("timestep", np.float32)
|
335 |
+
|
336 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
337 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
338 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
339 |
+
# and should be between [0, 1]
|
340 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
341 |
+
extra_step_kwargs = {}
|
342 |
+
if accepts_eta:
|
343 |
+
extra_step_kwargs["eta"] = eta
|
344 |
+
|
345 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
346 |
+
if accepts_generator:
|
347 |
+
extra_step_kwargs["generator"] = torch_generator
|
348 |
+
|
349 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
350 |
+
for i, t in enumerate(self.progress_bar(timesteps)):
|
351 |
+
|
352 |
+
# predict the noise residual
|
353 |
+
timestep = np.array([t], dtype=timestep_dtype)
|
354 |
+
|
355 |
+
noise_pred = self.unet(sample=latents, timestep=timestep, timestep_cond = w_embedding, encoder_hidden_states=prompt_embeds)[0]
|
356 |
+
|
357 |
+
# compute the previous noisy sample x_t -> x_t-1
|
358 |
+
latents, denoised = self.scheduler.step(
|
359 |
+
torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs, return_dict = False
|
360 |
+
)
|
361 |
+
|
362 |
+
latents, denoised = latents.numpy(), denoised.numpy()
|
363 |
+
|
364 |
+
# call the callback, if provided
|
365 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
366 |
+
if callback is not None and i % callback_steps == 0:
|
367 |
+
callback(i, t, latents)
|
368 |
+
|
369 |
+
if output_type == "latent":
|
370 |
+
image = latents
|
371 |
+
has_nsfw_concept = None
|
372 |
+
else:
|
373 |
+
denoised /= self.vae_decoder.config.get("scaling_factor", 0.18215)
|
374 |
+
# it seems likes there is a strange result for using half-precision vae decoder if batchsize>1
|
375 |
+
image = np.concatenate(
|
376 |
+
[self.vae_decoder(latent_sample=denoised[i : i + 1])[0] for i in range(latents.shape[0])]
|
377 |
+
)
|
378 |
+
image, has_nsfw_concept = self.run_safety_checker(image)
|
379 |
+
|
380 |
+
if has_nsfw_concept is None:
|
381 |
+
do_denormalize = [True] * image.shape[0]
|
382 |
+
else:
|
383 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
384 |
+
|
385 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
386 |
+
|
387 |
+
if not return_dict:
|
388 |
+
return (image, has_nsfw_concept)
|
389 |
+
|
390 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
backend/lcmdiffusion/pipelines/openvino/lcm_scheduler.py
ADDED
@@ -0,0 +1,529 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Stanford University Team and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
|
16 |
+
# and https://github.com/hojonathanho/diffusion
|
17 |
+
|
18 |
+
import math
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
import torch
|
24 |
+
|
25 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
26 |
+
from diffusers.utils import BaseOutput, logging
|
27 |
+
from diffusers.utils.torch_utils import randn_tensor
|
28 |
+
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
32 |
+
|
33 |
+
|
34 |
+
@dataclass
|
35 |
+
class LCMSchedulerOutput(BaseOutput):
|
36 |
+
"""
|
37 |
+
Output class for the scheduler's `step` function output.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
41 |
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
42 |
+
denoising loop.
|
43 |
+
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
44 |
+
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
45 |
+
`pred_original_sample` can be used to preview progress or for guidance.
|
46 |
+
"""
|
47 |
+
|
48 |
+
prev_sample: torch.FloatTensor
|
49 |
+
denoised: Optional[torch.FloatTensor] = None
|
50 |
+
|
51 |
+
|
52 |
+
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
53 |
+
def betas_for_alpha_bar(
|
54 |
+
num_diffusion_timesteps,
|
55 |
+
max_beta=0.999,
|
56 |
+
alpha_transform_type="cosine",
|
57 |
+
):
|
58 |
+
"""
|
59 |
+
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
60 |
+
(1-beta) over time from t = [0,1].
|
61 |
+
|
62 |
+
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
63 |
+
to that part of the diffusion process.
|
64 |
+
|
65 |
+
|
66 |
+
Args:
|
67 |
+
num_diffusion_timesteps (`int`): the number of betas to produce.
|
68 |
+
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
69 |
+
prevent singularities.
|
70 |
+
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
|
71 |
+
Choose from `cosine` or `exp`
|
72 |
+
|
73 |
+
Returns:
|
74 |
+
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
75 |
+
"""
|
76 |
+
if alpha_transform_type == "cosine":
|
77 |
+
|
78 |
+
def alpha_bar_fn(t):
|
79 |
+
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
|
80 |
+
|
81 |
+
elif alpha_transform_type == "exp":
|
82 |
+
|
83 |
+
def alpha_bar_fn(t):
|
84 |
+
return math.exp(t * -12.0)
|
85 |
+
|
86 |
+
else:
|
87 |
+
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
|
88 |
+
|
89 |
+
betas = []
|
90 |
+
for i in range(num_diffusion_timesteps):
|
91 |
+
t1 = i / num_diffusion_timesteps
|
92 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
93 |
+
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
|
94 |
+
return torch.tensor(betas, dtype=torch.float32)
|
95 |
+
|
96 |
+
|
97 |
+
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
|
98 |
+
def rescale_zero_terminal_snr(betas: torch.FloatTensor) -> torch.FloatTensor:
|
99 |
+
"""
|
100 |
+
Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
|
101 |
+
|
102 |
+
|
103 |
+
Args:
|
104 |
+
betas (`torch.FloatTensor`):
|
105 |
+
the betas that the scheduler is being initialized with.
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
`torch.FloatTensor`: rescaled betas with zero terminal SNR
|
109 |
+
"""
|
110 |
+
# Convert betas to alphas_bar_sqrt
|
111 |
+
alphas = 1.0 - betas
|
112 |
+
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
113 |
+
alphas_bar_sqrt = alphas_cumprod.sqrt()
|
114 |
+
|
115 |
+
# Store old values.
|
116 |
+
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
|
117 |
+
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
|
118 |
+
|
119 |
+
# Shift so the last timestep is zero.
|
120 |
+
alphas_bar_sqrt -= alphas_bar_sqrt_T
|
121 |
+
|
122 |
+
# Scale so the first timestep is back to the old value.
|
123 |
+
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
|
124 |
+
|
125 |
+
# Convert alphas_bar_sqrt to betas
|
126 |
+
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
|
127 |
+
alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod
|
128 |
+
alphas = torch.cat([alphas_bar[0:1], alphas])
|
129 |
+
betas = 1 - alphas
|
130 |
+
|
131 |
+
return betas
|
132 |
+
|
133 |
+
|
134 |
+
class LCMScheduler(SchedulerMixin, ConfigMixin):
|
135 |
+
"""
|
136 |
+
`LCMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
|
137 |
+
non-Markovian guidance.
|
138 |
+
|
139 |
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. [`~ConfigMixin`] takes care of storing all config
|
140 |
+
attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be
|
141 |
+
accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving
|
142 |
+
functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions.
|
143 |
+
|
144 |
+
Args:
|
145 |
+
num_train_timesteps (`int`, defaults to 1000):
|
146 |
+
The number of diffusion steps to train the model.
|
147 |
+
beta_start (`float`, defaults to 0.0001):
|
148 |
+
The starting `beta` value of inference.
|
149 |
+
beta_end (`float`, defaults to 0.02):
|
150 |
+
The final `beta` value.
|
151 |
+
beta_schedule (`str`, defaults to `"linear"`):
|
152 |
+
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
153 |
+
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
154 |
+
trained_betas (`np.ndarray`, *optional*):
|
155 |
+
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
156 |
+
original_inference_steps (`int`, *optional*, defaults to 50):
|
157 |
+
The default number of inference steps used to generate a linearly-spaced timestep schedule, from which we
|
158 |
+
will ultimately take `num_inference_steps` evenly spaced timesteps to form the final timestep schedule.
|
159 |
+
clip_sample (`bool`, defaults to `True`):
|
160 |
+
Clip the predicted sample for numerical stability.
|
161 |
+
clip_sample_range (`float`, defaults to 1.0):
|
162 |
+
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
|
163 |
+
set_alpha_to_one (`bool`, defaults to `True`):
|
164 |
+
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
|
165 |
+
there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
|
166 |
+
otherwise it uses the alpha value at step 0.
|
167 |
+
steps_offset (`int`, defaults to 0):
|
168 |
+
An offset added to the inference steps. You can use a combination of `offset=1` and
|
169 |
+
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
|
170 |
+
Diffusion.
|
171 |
+
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
172 |
+
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
173 |
+
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
174 |
+
Video](https://imagen.research.google/video/paper.pdf) paper).
|
175 |
+
thresholding (`bool`, defaults to `False`):
|
176 |
+
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
|
177 |
+
as Stable Diffusion.
|
178 |
+
dynamic_thresholding_ratio (`float`, defaults to 0.995):
|
179 |
+
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
|
180 |
+
sample_max_value (`float`, defaults to 1.0):
|
181 |
+
The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
|
182 |
+
timestep_spacing (`str`, defaults to `"leading"`):
|
183 |
+
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
184 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
185 |
+
rescale_betas_zero_snr (`bool`, defaults to `False`):
|
186 |
+
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
|
187 |
+
dark samples instead of limiting it to samples with medium brightness. Loosely related to
|
188 |
+
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
|
189 |
+
"""
|
190 |
+
|
191 |
+
order = 1
|
192 |
+
|
193 |
+
@register_to_config
|
194 |
+
def __init__(
|
195 |
+
self,
|
196 |
+
num_train_timesteps: int = 1000,
|
197 |
+
beta_start: float = 0.00085,
|
198 |
+
beta_end: float = 0.012,
|
199 |
+
beta_schedule: str = "scaled_linear",
|
200 |
+
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
201 |
+
original_inference_steps: int = 50,
|
202 |
+
clip_sample: bool = False,
|
203 |
+
clip_sample_range: float = 1.0,
|
204 |
+
set_alpha_to_one: bool = True,
|
205 |
+
steps_offset: int = 0,
|
206 |
+
prediction_type: str = "epsilon",
|
207 |
+
thresholding: bool = False,
|
208 |
+
dynamic_thresholding_ratio: float = 0.995,
|
209 |
+
sample_max_value: float = 1.0,
|
210 |
+
timestep_spacing: str = "leading",
|
211 |
+
rescale_betas_zero_snr: bool = False,
|
212 |
+
):
|
213 |
+
if trained_betas is not None:
|
214 |
+
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
215 |
+
elif beta_schedule == "linear":
|
216 |
+
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
217 |
+
elif beta_schedule == "scaled_linear":
|
218 |
+
# this schedule is very specific to the latent diffusion model.
|
219 |
+
self.betas = (
|
220 |
+
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
221 |
+
)
|
222 |
+
elif beta_schedule == "squaredcos_cap_v2":
|
223 |
+
# Glide cosine schedule
|
224 |
+
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
225 |
+
else:
|
226 |
+
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
227 |
+
|
228 |
+
# Rescale for zero SNR
|
229 |
+
if rescale_betas_zero_snr:
|
230 |
+
self.betas = rescale_zero_terminal_snr(self.betas)
|
231 |
+
|
232 |
+
self.alphas = 1.0 - self.betas
|
233 |
+
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
234 |
+
|
235 |
+
# At every step in ddim, we are looking into the previous alphas_cumprod
|
236 |
+
# For the final step, there is no previous alphas_cumprod because we are already at 0
|
237 |
+
# `set_alpha_to_one` decides whether we set this parameter simply to one or
|
238 |
+
# whether we use the final alpha of the "non-previous" one.
|
239 |
+
self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
|
240 |
+
|
241 |
+
# standard deviation of the initial noise distribution
|
242 |
+
self.init_noise_sigma = 1.0
|
243 |
+
|
244 |
+
# setable values
|
245 |
+
self.num_inference_steps = None
|
246 |
+
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
|
247 |
+
|
248 |
+
self._step_index = None
|
249 |
+
|
250 |
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
|
251 |
+
def _init_step_index(self, timestep):
|
252 |
+
if isinstance(timestep, torch.Tensor):
|
253 |
+
timestep = timestep.to(self.timesteps.device)
|
254 |
+
|
255 |
+
index_candidates = (self.timesteps == timestep).nonzero()
|
256 |
+
|
257 |
+
# The sigma index that is taken for the **very** first `step`
|
258 |
+
# is always the second index (or the last index if there is only 1)
|
259 |
+
# This way we can ensure we don't accidentally skip a sigma in
|
260 |
+
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
261 |
+
if len(index_candidates) > 1:
|
262 |
+
step_index = index_candidates[1]
|
263 |
+
else:
|
264 |
+
step_index = index_candidates[0]
|
265 |
+
|
266 |
+
self._step_index = step_index.item()
|
267 |
+
|
268 |
+
@property
|
269 |
+
def step_index(self):
|
270 |
+
return self._step_index
|
271 |
+
|
272 |
+
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
|
273 |
+
"""
|
274 |
+
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
275 |
+
current timestep.
|
276 |
+
|
277 |
+
Args:
|
278 |
+
sample (`torch.FloatTensor`):
|
279 |
+
The input sample.
|
280 |
+
timestep (`int`, *optional*):
|
281 |
+
The current timestep in the diffusion chain.
|
282 |
+
Returns:
|
283 |
+
`torch.FloatTensor`:
|
284 |
+
A scaled input sample.
|
285 |
+
"""
|
286 |
+
return sample
|
287 |
+
|
288 |
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
289 |
+
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
290 |
+
"""
|
291 |
+
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
292 |
+
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
293 |
+
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
|
294 |
+
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
295 |
+
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
296 |
+
|
297 |
+
https://arxiv.org/abs/2205.11487
|
298 |
+
"""
|
299 |
+
dtype = sample.dtype
|
300 |
+
batch_size, channels, *remaining_dims = sample.shape
|
301 |
+
|
302 |
+
if dtype not in (torch.float32, torch.float64):
|
303 |
+
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
|
304 |
+
|
305 |
+
# Flatten sample for doing quantile calculation along each image
|
306 |
+
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
|
307 |
+
|
308 |
+
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
309 |
+
|
310 |
+
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
|
311 |
+
s = torch.clamp(
|
312 |
+
s, min=1, max=self.config.sample_max_value
|
313 |
+
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
314 |
+
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
|
315 |
+
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
|
316 |
+
|
317 |
+
sample = sample.reshape(batch_size, channels, *remaining_dims)
|
318 |
+
sample = sample.to(dtype)
|
319 |
+
|
320 |
+
return sample
|
321 |
+
|
322 |
+
def set_timesteps(
|
323 |
+
self,
|
324 |
+
num_inference_steps: int,
|
325 |
+
device: Union[str, torch.device] = None,
|
326 |
+
original_inference_steps: Optional[int] = None,
|
327 |
+
):
|
328 |
+
"""
|
329 |
+
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
330 |
+
|
331 |
+
Args:
|
332 |
+
num_inference_steps (`int`):
|
333 |
+
The number of diffusion steps used when generating samples with a pre-trained model.
|
334 |
+
device (`str` or `torch.device`, *optional*):
|
335 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
336 |
+
original_inference_steps (`int`, *optional*):
|
337 |
+
The original number of inference steps, which will be used to generate a linearly-spaced timestep
|
338 |
+
schedule (which is different from the standard `diffusers` implementation). We will then take
|
339 |
+
`num_inference_steps` timesteps from this schedule, evenly spaced in terms of indices, and use that as
|
340 |
+
our final timestep schedule. If not set, this will default to the `original_inference_steps` attribute.
|
341 |
+
"""
|
342 |
+
|
343 |
+
if num_inference_steps > self.config.num_train_timesteps:
|
344 |
+
raise ValueError(
|
345 |
+
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
346 |
+
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
347 |
+
f" maximal {self.config.num_train_timesteps} timesteps."
|
348 |
+
)
|
349 |
+
|
350 |
+
self.num_inference_steps = num_inference_steps
|
351 |
+
original_steps = (
|
352 |
+
original_inference_steps if original_inference_steps is not None else self.original_inference_steps
|
353 |
+
)
|
354 |
+
|
355 |
+
if original_steps > self.config.num_train_timesteps:
|
356 |
+
raise ValueError(
|
357 |
+
f"`original_steps`: {original_steps} cannot be larger than `self.config.train_timesteps`:"
|
358 |
+
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
359 |
+
f" maximal {self.config.num_train_timesteps} timesteps."
|
360 |
+
)
|
361 |
+
|
362 |
+
if num_inference_steps > original_steps:
|
363 |
+
raise ValueError(
|
364 |
+
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `original_inference_steps`:"
|
365 |
+
f" {original_steps} because the final timestep schedule will be a subset of the"
|
366 |
+
f" `original_inference_steps`-sized initial timestep schedule."
|
367 |
+
)
|
368 |
+
|
369 |
+
# LCM Timesteps Setting
|
370 |
+
# Currently, only linear spacing is supported.
|
371 |
+
c = self.config.num_train_timesteps // original_steps
|
372 |
+
# LCM Training Steps Schedule
|
373 |
+
lcm_origin_timesteps = np.asarray(list(range(1, original_steps + 1))) * c - 1
|
374 |
+
skipping_step = len(lcm_origin_timesteps) // num_inference_steps
|
375 |
+
# LCM Inference Steps Schedule
|
376 |
+
timesteps = lcm_origin_timesteps[::-skipping_step][:num_inference_steps]
|
377 |
+
|
378 |
+
self.timesteps = torch.from_numpy(timesteps.copy()).to(device=device, dtype=torch.long)
|
379 |
+
|
380 |
+
self._step_index = None
|
381 |
+
|
382 |
+
def get_scalings_for_boundary_condition_discrete(self, t):
|
383 |
+
self.sigma_data = 0.5 # Default: 0.5
|
384 |
+
|
385 |
+
# By dividing 0.1: This is almost a delta function at t=0.
|
386 |
+
c_skip = self.sigma_data**2 / ((t / 0.1) ** 2 + self.sigma_data**2)
|
387 |
+
c_out = (t / 0.1) / ((t / 0.1) ** 2 + self.sigma_data**2) ** 0.5
|
388 |
+
return c_skip, c_out
|
389 |
+
|
390 |
+
def step(
|
391 |
+
self,
|
392 |
+
model_output: torch.FloatTensor,
|
393 |
+
timestep: int,
|
394 |
+
sample: torch.FloatTensor,
|
395 |
+
generator: Optional[torch.Generator] = None,
|
396 |
+
return_dict: bool = True,
|
397 |
+
) -> Union[LCMSchedulerOutput, Tuple]:
|
398 |
+
"""
|
399 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
400 |
+
process from the learned model outputs (most often the predicted noise).
|
401 |
+
|
402 |
+
Args:
|
403 |
+
model_output (`torch.FloatTensor`):
|
404 |
+
The direct output from learned diffusion model.
|
405 |
+
timestep (`float`):
|
406 |
+
The current discrete timestep in the diffusion chain.
|
407 |
+
sample (`torch.FloatTensor`):
|
408 |
+
A current instance of a sample created by the diffusion process.
|
409 |
+
generator (`torch.Generator`, *optional*):
|
410 |
+
A random number generator.
|
411 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
412 |
+
Whether or not to return a [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] or `tuple`.
|
413 |
+
Returns:
|
414 |
+
[`~schedulers.scheduling_utils.LCMSchedulerOutput`] or `tuple`:
|
415 |
+
If return_dict is `True`, [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] is returned, otherwise a
|
416 |
+
tuple is returned where the first element is the sample tensor.
|
417 |
+
"""
|
418 |
+
if self.num_inference_steps is None:
|
419 |
+
raise ValueError(
|
420 |
+
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
421 |
+
)
|
422 |
+
|
423 |
+
if self.step_index is None:
|
424 |
+
self._init_step_index(timestep)
|
425 |
+
|
426 |
+
# 1. get previous step value
|
427 |
+
prev_step_index = self.step_index + 1
|
428 |
+
if prev_step_index < len(self.timesteps):
|
429 |
+
prev_timestep = self.timesteps[prev_step_index]
|
430 |
+
else:
|
431 |
+
prev_timestep = timestep
|
432 |
+
|
433 |
+
# 2. compute alphas, betas
|
434 |
+
alpha_prod_t = self.alphas_cumprod[timestep]
|
435 |
+
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
436 |
+
|
437 |
+
beta_prod_t = 1 - alpha_prod_t
|
438 |
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
439 |
+
|
440 |
+
# 3. Get scalings for boundary conditions
|
441 |
+
c_skip, c_out = self.get_scalings_for_boundary_condition_discrete(timestep)
|
442 |
+
|
443 |
+
# 4. Compute the predicted original sample x_0 based on the model parameterization
|
444 |
+
if self.config.prediction_type == "epsilon": # noise-prediction
|
445 |
+
predicted_original_sample = (sample - beta_prod_t.sqrt() * model_output) / alpha_prod_t.sqrt()
|
446 |
+
elif self.config.prediction_type == "sample": # x-prediction
|
447 |
+
predicted_original_sample = model_output
|
448 |
+
elif self.config.prediction_type == "v_prediction": # v-prediction
|
449 |
+
predicted_original_sample = alpha_prod_t.sqrt() * sample - beta_prod_t.sqrt() * model_output
|
450 |
+
else:
|
451 |
+
raise ValueError(
|
452 |
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
|
453 |
+
" `v_prediction` for `LCMScheduler`."
|
454 |
+
)
|
455 |
+
|
456 |
+
# 5. Clip or threshold "predicted x_0"
|
457 |
+
if self.config.thresholding:
|
458 |
+
predicted_original_sample = self._threshold_sample(predicted_original_sample)
|
459 |
+
elif self.config.clip_sample:
|
460 |
+
predicted_original_sample = predicted_original_sample.clamp(
|
461 |
+
-self.config.clip_sample_range, self.config.clip_sample_range
|
462 |
+
)
|
463 |
+
|
464 |
+
# 6. Denoise model output using boundary conditions
|
465 |
+
denoised = c_out * predicted_original_sample + c_skip * sample
|
466 |
+
|
467 |
+
# 7. Sample and inject noise z ~ N(0, I) for MultiStep Inference
|
468 |
+
# Noise is not used for one-step sampling.
|
469 |
+
if len(self.timesteps) > 1:
|
470 |
+
noise = randn_tensor(model_output.shape, generator=generator, device=model_output.device)
|
471 |
+
prev_sample = alpha_prod_t_prev.sqrt() * denoised + beta_prod_t_prev.sqrt() * noise
|
472 |
+
else:
|
473 |
+
prev_sample = denoised
|
474 |
+
|
475 |
+
# upon completion increase step index by one
|
476 |
+
self._step_index += 1
|
477 |
+
|
478 |
+
if not return_dict:
|
479 |
+
return (prev_sample, denoised)
|
480 |
+
|
481 |
+
return LCMSchedulerOutput(prev_sample=prev_sample, denoised=denoised)
|
482 |
+
|
483 |
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
|
484 |
+
def add_noise(
|
485 |
+
self,
|
486 |
+
original_samples: torch.FloatTensor,
|
487 |
+
noise: torch.FloatTensor,
|
488 |
+
timesteps: torch.IntTensor,
|
489 |
+
) -> torch.FloatTensor:
|
490 |
+
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
491 |
+
alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
|
492 |
+
timesteps = timesteps.to(original_samples.device)
|
493 |
+
|
494 |
+
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
495 |
+
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
496 |
+
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
497 |
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
498 |
+
|
499 |
+
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
500 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
501 |
+
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
502 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
503 |
+
|
504 |
+
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
505 |
+
return noisy_samples
|
506 |
+
|
507 |
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
|
508 |
+
def get_velocity(
|
509 |
+
self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
|
510 |
+
) -> torch.FloatTensor:
|
511 |
+
# Make sure alphas_cumprod and timestep have same device and dtype as sample
|
512 |
+
alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
|
513 |
+
timesteps = timesteps.to(sample.device)
|
514 |
+
|
515 |
+
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
516 |
+
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
517 |
+
while len(sqrt_alpha_prod.shape) < len(sample.shape):
|
518 |
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
519 |
+
|
520 |
+
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
521 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
522 |
+
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
|
523 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
524 |
+
|
525 |
+
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
|
526 |
+
return velocity
|
527 |
+
|
528 |
+
def __len__(self):
|
529 |
+
return self.config.num_train_timesteps
|
backend/models/__pycache__/lcmdiffusion_setting.cpython-311.pyc
ADDED
Binary file (1.39 kB). View file
|
|
backend/models/lcmdiffusion_setting.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from constants import LCM_DEFAULT_MODEL
|
5 |
+
|
6 |
+
|
7 |
+
class LCMDiffusionSetting(BaseModel):
|
8 |
+
lcm_model_id: str = LCM_DEFAULT_MODEL
|
9 |
+
prompt: str = ""
|
10 |
+
image_height: Optional[int] = 512
|
11 |
+
image_width: Optional[int] = 512
|
12 |
+
inference_steps: Optional[int] = 4
|
13 |
+
guidance_scale: Optional[float] = 8
|
14 |
+
number_of_images: Optional[int] = 1
|
15 |
+
seed: Optional[int] = -1
|
16 |
+
use_openvino: bool = False
|
17 |
+
use_seed: bool = False
|
18 |
+
use_offline_model: bool = False
|
19 |
+
use_safety_checker: bool = True
|
constants.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from os import environ
|
2 |
+
|
3 |
+
APP_VERSION = "v1.0.0 beta 7"
|
4 |
+
LCM_DEFAULT_MODEL = "SimianLuo/LCM_Dreamshaper_v7"
|
5 |
+
LCM_DEFAULT_MODEL_OPENVINO = "deinferno/LCM_Dreamshaper_v7-openvino"
|
6 |
+
APP_NAME = "FastSD CPU"
|
7 |
+
APP_SETTINGS_FILE = "settings.yaml"
|
8 |
+
RESULTS_DIRECTORY = "results"
|
9 |
+
CONFIG_DIRECTORY = "configs"
|
10 |
+
DEVICE = environ.get("DEVICE", "cpu")
|
context.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
from app_settings import Settings
|
3 |
+
from models.interface_types import InterfaceType
|
4 |
+
from backend.lcm_text_to_image import LCMTextToImage
|
5 |
+
from time import time
|
6 |
+
from backend.image_saver import ImageSaver
|
7 |
+
from pprint import pprint
|
8 |
+
|
9 |
+
|
10 |
+
class Context:
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
interface_type: InterfaceType,
|
14 |
+
device="cpu",
|
15 |
+
):
|
16 |
+
self.interface_type = interface_type
|
17 |
+
self.lcm_text_to_image = LCMTextToImage(device)
|
18 |
+
|
19 |
+
def generate_text_to_image(
|
20 |
+
self,
|
21 |
+
settings: Settings,
|
22 |
+
reshape: bool = False,
|
23 |
+
device: str = "cpu",
|
24 |
+
) -> Any:
|
25 |
+
tick = time()
|
26 |
+
pprint(settings.lcm_diffusion_setting.model_dump())
|
27 |
+
self.lcm_text_to_image.init(
|
28 |
+
settings.lcm_diffusion_setting.lcm_model_id,
|
29 |
+
settings.lcm_diffusion_setting.use_openvino,
|
30 |
+
device,
|
31 |
+
settings.lcm_diffusion_setting.use_offline_model,
|
32 |
+
)
|
33 |
+
images = self.lcm_text_to_image.generate(
|
34 |
+
settings.lcm_diffusion_setting,
|
35 |
+
reshape,
|
36 |
+
)
|
37 |
+
elapsed = time() - tick
|
38 |
+
ImageSaver.save_images(
|
39 |
+
settings.results_path,
|
40 |
+
images=images,
|
41 |
+
lcm_diffusion_setting=settings.lcm_diffusion_setting,
|
42 |
+
)
|
43 |
+
print(f"Elapsed time : {elapsed:.2f} seconds")
|
44 |
+
return images
|
frontend/__pycache__/utils.cpython-311.pyc
ADDED
Binary file (1.49 kB). View file
|
|
frontend/gui/__pycache__/app_window.cpython-311.pyc
ADDED
Binary file (29.9 kB). View file
|
|
frontend/gui/__pycache__/image_generator_worker.cpython-311.pyc
ADDED
Binary file (2.54 kB). View file
|
|
frontend/gui/__pycache__/ui.cpython-311.pyc
ADDED
Binary file (907 Bytes). View file
|
|
frontend/gui/app_window.py
ADDED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PyQt5.QtWidgets import (
|
2 |
+
QWidget,
|
3 |
+
QPushButton,
|
4 |
+
QHBoxLayout,
|
5 |
+
QVBoxLayout,
|
6 |
+
QLabel,
|
7 |
+
QLineEdit,
|
8 |
+
QMainWindow,
|
9 |
+
QSlider,
|
10 |
+
QTabWidget,
|
11 |
+
QSpacerItem,
|
12 |
+
QSizePolicy,
|
13 |
+
QComboBox,
|
14 |
+
QCheckBox,
|
15 |
+
QTextEdit,
|
16 |
+
QToolButton,
|
17 |
+
QFileDialog,
|
18 |
+
)
|
19 |
+
|
20 |
+
from PyQt5.QtGui import QPixmap, QDesktopServices
|
21 |
+
from PyQt5.QtCore import QSize, QThreadPool, Qt, QUrl
|
22 |
+
|
23 |
+
from PIL.ImageQt import ImageQt
|
24 |
+
from constants import (
|
25 |
+
LCM_DEFAULT_MODEL,
|
26 |
+
LCM_DEFAULT_MODEL_OPENVINO,
|
27 |
+
APP_NAME,
|
28 |
+
APP_VERSION,
|
29 |
+
)
|
30 |
+
from frontend.gui.image_generator_worker import ImageGeneratorWorker
|
31 |
+
from app_settings import AppSettings
|
32 |
+
from paths import FastStableDiffusionPaths
|
33 |
+
from frontend.utils import is_reshape_required
|
34 |
+
from context import Context
|
35 |
+
from models.interface_types import InterfaceType
|
36 |
+
from constants import DEVICE
|
37 |
+
from frontend.utils import enable_openvino_controls
|
38 |
+
|
39 |
+
|
40 |
+
class MainWindow(QMainWindow):
|
41 |
+
def __init__(self, config: AppSettings):
|
42 |
+
super().__init__()
|
43 |
+
self.setWindowTitle(APP_NAME)
|
44 |
+
self.setFixedSize(QSize(600, 620))
|
45 |
+
self.init_ui()
|
46 |
+
self.pipeline = None
|
47 |
+
self.threadpool = QThreadPool()
|
48 |
+
self.config = config
|
49 |
+
self.device = "cpu"
|
50 |
+
self.previous_width = 0
|
51 |
+
self.previous_height = 0
|
52 |
+
self.previous_model = ""
|
53 |
+
self.previous_num_of_images = 0
|
54 |
+
self.context = Context(InterfaceType.GUI)
|
55 |
+
self.init_ui_values()
|
56 |
+
self.gen_images = []
|
57 |
+
self.image_index = 0
|
58 |
+
print(f"Output path : { self.config.settings.results_path}")
|
59 |
+
|
60 |
+
def init_ui_values(self):
|
61 |
+
self.lcm_model.setEnabled(
|
62 |
+
not self.config.settings.lcm_diffusion_setting.use_openvino
|
63 |
+
)
|
64 |
+
self.guidance.setValue(
|
65 |
+
int(self.config.settings.lcm_diffusion_setting.guidance_scale * 10)
|
66 |
+
)
|
67 |
+
self.seed_value.setEnabled(self.config.settings.lcm_diffusion_setting.use_seed)
|
68 |
+
self.safety_checker.setChecked(
|
69 |
+
self.config.settings.lcm_diffusion_setting.use_safety_checker
|
70 |
+
)
|
71 |
+
self.use_openvino_check.setChecked(
|
72 |
+
self.config.settings.lcm_diffusion_setting.use_openvino
|
73 |
+
)
|
74 |
+
self.width.setCurrentText(
|
75 |
+
str(self.config.settings.lcm_diffusion_setting.image_width)
|
76 |
+
)
|
77 |
+
self.height.setCurrentText(
|
78 |
+
str(self.config.settings.lcm_diffusion_setting.image_height)
|
79 |
+
)
|
80 |
+
self.inference_steps.setValue(
|
81 |
+
int(self.config.settings.lcm_diffusion_setting.inference_steps)
|
82 |
+
)
|
83 |
+
self.seed_check.setChecked(self.config.settings.lcm_diffusion_setting.use_seed)
|
84 |
+
self.seed_value.setText(str(self.config.settings.lcm_diffusion_setting.seed))
|
85 |
+
self.use_local_model_folder.setChecked(
|
86 |
+
self.config.settings.lcm_diffusion_setting.use_offline_model
|
87 |
+
)
|
88 |
+
self.results_path.setText(self.config.settings.results_path)
|
89 |
+
self.num_images.setValue(
|
90 |
+
self.config.settings.lcm_diffusion_setting.number_of_images
|
91 |
+
)
|
92 |
+
|
93 |
+
def init_ui(self):
|
94 |
+
self.create_main_tab()
|
95 |
+
self.create_settings_tab()
|
96 |
+
self.create_about_tab()
|
97 |
+
self.show()
|
98 |
+
|
99 |
+
def create_main_tab(self):
|
100 |
+
self.img = QLabel("<<Image>>")
|
101 |
+
self.img.setAlignment(Qt.AlignCenter)
|
102 |
+
self.img.setFixedSize(QSize(512, 512))
|
103 |
+
|
104 |
+
self.prompt = QTextEdit()
|
105 |
+
self.prompt.setPlaceholderText("A fantasy landscape")
|
106 |
+
self.prompt.setAcceptRichText(False)
|
107 |
+
self.generate = QPushButton("Generate")
|
108 |
+
self.generate.clicked.connect(self.text_to_image)
|
109 |
+
self.prompt.setFixedHeight(35)
|
110 |
+
self.browse_results = QPushButton("...")
|
111 |
+
self.browse_results.setFixedWidth(30)
|
112 |
+
self.browse_results.clicked.connect(self.on_open_results_folder)
|
113 |
+
self.browse_results.setToolTip("Open output folder")
|
114 |
+
|
115 |
+
hlayout = QHBoxLayout()
|
116 |
+
hlayout.addWidget(self.prompt)
|
117 |
+
hlayout.addWidget(self.generate)
|
118 |
+
hlayout.addWidget(self.browse_results)
|
119 |
+
|
120 |
+
self.previous_img_btn = QToolButton()
|
121 |
+
self.previous_img_btn.setText("<")
|
122 |
+
self.previous_img_btn.clicked.connect(self.on_show_previous_image)
|
123 |
+
self.next_img_btn = QToolButton()
|
124 |
+
self.next_img_btn.setText(">")
|
125 |
+
self.next_img_btn.clicked.connect(self.on_show_next_image)
|
126 |
+
hlayout_nav = QHBoxLayout()
|
127 |
+
hlayout_nav.addWidget(self.previous_img_btn)
|
128 |
+
hlayout_nav.addWidget(self.img)
|
129 |
+
hlayout_nav.addWidget(self.next_img_btn)
|
130 |
+
|
131 |
+
vlayout = QVBoxLayout()
|
132 |
+
vlayout.addLayout(hlayout_nav)
|
133 |
+
vlayout.addLayout(hlayout)
|
134 |
+
|
135 |
+
self.tab_widget = QTabWidget(self)
|
136 |
+
self.tab_main = QWidget()
|
137 |
+
self.tab_settings = QWidget()
|
138 |
+
self.tab_about = QWidget()
|
139 |
+
self.tab_main.setLayout(vlayout)
|
140 |
+
|
141 |
+
self.tab_widget.addTab(self.tab_main, "Text to Image")
|
142 |
+
self.tab_widget.addTab(self.tab_settings, "Settings")
|
143 |
+
self.tab_widget.addTab(self.tab_about, "About")
|
144 |
+
|
145 |
+
self.setCentralWidget(self.tab_widget)
|
146 |
+
self.use_seed = False
|
147 |
+
|
148 |
+
def create_settings_tab(self):
|
149 |
+
model_hlayout = QHBoxLayout()
|
150 |
+
self.lcm_model_label = QLabel("Latent Consistency Model:")
|
151 |
+
self.lcm_model = QLineEdit(LCM_DEFAULT_MODEL)
|
152 |
+
model_hlayout.addWidget(self.lcm_model_label)
|
153 |
+
model_hlayout.addWidget(self.lcm_model)
|
154 |
+
|
155 |
+
self.inference_steps_value = QLabel("Number of inference steps: 4")
|
156 |
+
self.inference_steps = QSlider(orientation=Qt.Orientation.Horizontal)
|
157 |
+
self.inference_steps.setMaximum(25)
|
158 |
+
self.inference_steps.setMinimum(1)
|
159 |
+
self.inference_steps.setValue(4)
|
160 |
+
self.inference_steps.valueChanged.connect(self.update_steps_label)
|
161 |
+
|
162 |
+
self.num_images_value = QLabel("Number of images: 1")
|
163 |
+
self.num_images = QSlider(orientation=Qt.Orientation.Horizontal)
|
164 |
+
self.num_images.setMaximum(100)
|
165 |
+
self.num_images.setMinimum(1)
|
166 |
+
self.num_images.setValue(1)
|
167 |
+
self.num_images.valueChanged.connect(self.update_num_images_label)
|
168 |
+
|
169 |
+
self.guidance_value = QLabel("Guidance scale: 8")
|
170 |
+
self.guidance = QSlider(orientation=Qt.Orientation.Horizontal)
|
171 |
+
self.guidance.setMaximum(200)
|
172 |
+
self.guidance.setMinimum(10)
|
173 |
+
self.guidance.setValue(80)
|
174 |
+
self.guidance.valueChanged.connect(self.update_guidance_label)
|
175 |
+
|
176 |
+
self.width_value = QLabel("Width :")
|
177 |
+
self.width = QComboBox(self)
|
178 |
+
self.width.addItem("256")
|
179 |
+
self.width.addItem("512")
|
180 |
+
self.width.addItem("768")
|
181 |
+
self.width.setCurrentText("512")
|
182 |
+
self.width.currentIndexChanged.connect(self.on_width_changed)
|
183 |
+
|
184 |
+
self.height_value = QLabel("Height :")
|
185 |
+
self.height = QComboBox(self)
|
186 |
+
self.height.addItem("256")
|
187 |
+
self.height.addItem("512")
|
188 |
+
self.height.addItem("768")
|
189 |
+
self.height.setCurrentText("512")
|
190 |
+
self.height.currentIndexChanged.connect(self.on_height_changed)
|
191 |
+
|
192 |
+
self.seed_check = QCheckBox("Use seed")
|
193 |
+
self.seed_value = QLineEdit()
|
194 |
+
self.seed_value.setInputMask("9999999999")
|
195 |
+
self.seed_value.setText("123123")
|
196 |
+
self.seed_check.stateChanged.connect(self.seed_changed)
|
197 |
+
|
198 |
+
self.safety_checker = QCheckBox("Use safety checker")
|
199 |
+
self.safety_checker.setChecked(True)
|
200 |
+
self.safety_checker.stateChanged.connect(self.use_safety_checker_changed)
|
201 |
+
|
202 |
+
self.use_openvino_check = QCheckBox("Use OpenVINO")
|
203 |
+
self.use_openvino_check.setChecked(False)
|
204 |
+
self.use_local_model_folder = QCheckBox(
|
205 |
+
"Use locally cached model or downloaded model folder(offline)"
|
206 |
+
)
|
207 |
+
self.use_openvino_check.setEnabled(enable_openvino_controls())
|
208 |
+
self.use_local_model_folder.setChecked(False)
|
209 |
+
self.use_local_model_folder.stateChanged.connect(self.use_offline_model_changed)
|
210 |
+
self.use_openvino_check.stateChanged.connect(self.use_openvino_changed)
|
211 |
+
|
212 |
+
hlayout = QHBoxLayout()
|
213 |
+
hlayout.addWidget(self.seed_check)
|
214 |
+
hlayout.addWidget(self.seed_value)
|
215 |
+
hspacer = QSpacerItem(20, 10, QSizePolicy.Expanding, QSizePolicy.Minimum)
|
216 |
+
slider_hspacer = QSpacerItem(20, 10, QSizePolicy.Expanding, QSizePolicy.Minimum)
|
217 |
+
|
218 |
+
self.results_path_label = QLabel("Output path:")
|
219 |
+
self.results_path = QLineEdit()
|
220 |
+
self.results_path.textChanged.connect(self.on_path_changed)
|
221 |
+
self.browse_folder_btn = QToolButton()
|
222 |
+
self.browse_folder_btn.setText("...")
|
223 |
+
self.browse_folder_btn.clicked.connect(self.on_browse_folder)
|
224 |
+
|
225 |
+
self.reset = QPushButton("Reset All")
|
226 |
+
self.reset.clicked.connect(self.reset_all_settings)
|
227 |
+
|
228 |
+
vlayout = QVBoxLayout()
|
229 |
+
vspacer = QSpacerItem(20, 20, QSizePolicy.Minimum, QSizePolicy.Expanding)
|
230 |
+
vlayout.addItem(hspacer)
|
231 |
+
vlayout.addLayout(model_hlayout)
|
232 |
+
vlayout.addWidget(self.use_local_model_folder)
|
233 |
+
vlayout.addItem(slider_hspacer)
|
234 |
+
vlayout.addWidget(self.inference_steps_value)
|
235 |
+
vlayout.addWidget(self.inference_steps)
|
236 |
+
vlayout.addWidget(self.num_images_value)
|
237 |
+
vlayout.addWidget(self.num_images)
|
238 |
+
vlayout.addWidget(self.width_value)
|
239 |
+
vlayout.addWidget(self.width)
|
240 |
+
vlayout.addWidget(self.height_value)
|
241 |
+
vlayout.addWidget(self.height)
|
242 |
+
vlayout.addWidget(self.guidance_value)
|
243 |
+
vlayout.addWidget(self.guidance)
|
244 |
+
vlayout.addLayout(hlayout)
|
245 |
+
vlayout.addWidget(self.safety_checker)
|
246 |
+
vlayout.addWidget(self.use_openvino_check)
|
247 |
+
vlayout.addWidget(self.results_path_label)
|
248 |
+
hlayout_path = QHBoxLayout()
|
249 |
+
hlayout_path.addWidget(self.results_path)
|
250 |
+
hlayout_path.addWidget(self.browse_folder_btn)
|
251 |
+
vlayout.addLayout(hlayout_path)
|
252 |
+
self.tab_settings.setLayout(vlayout)
|
253 |
+
hlayout_reset = QHBoxLayout()
|
254 |
+
hspacer = QSpacerItem(20, 20, QSizePolicy.Expanding, QSizePolicy.Minimum)
|
255 |
+
hlayout_reset.addItem(hspacer)
|
256 |
+
hlayout_reset.addWidget(self.reset)
|
257 |
+
vlayout.addLayout(hlayout_reset)
|
258 |
+
vlayout.addItem(vspacer)
|
259 |
+
|
260 |
+
def create_about_tab(self):
|
261 |
+
self.label = QLabel()
|
262 |
+
self.label.setAlignment(Qt.AlignCenter)
|
263 |
+
self.label.setText(
|
264 |
+
f"""<h1>FastSD CPU {APP_VERSION}</h1>
|
265 |
+
<h3>(c)2023 - Rupesh Sreeraman</h3>
|
266 |
+
<h3>Faster stable diffusion on CPU</h3>
|
267 |
+
<h3>Based on Latent Consistency Models</h3>
|
268 |
+
<h3>GitHub : https://github.com/rupeshs/fastsdcpu/</h3>"""
|
269 |
+
)
|
270 |
+
|
271 |
+
vlayout = QVBoxLayout()
|
272 |
+
vlayout.addWidget(self.label)
|
273 |
+
self.tab_about.setLayout(vlayout)
|
274 |
+
|
275 |
+
def on_show_next_image(self):
|
276 |
+
if self.image_index != len(self.gen_images) - 1 and len(self.gen_images) > 0:
|
277 |
+
self.previous_img_btn.setEnabled(True)
|
278 |
+
self.image_index += 1
|
279 |
+
self.img.setPixmap(self.gen_images[self.image_index])
|
280 |
+
if self.image_index == len(self.gen_images) - 1:
|
281 |
+
self.next_img_btn.setEnabled(False)
|
282 |
+
|
283 |
+
def on_open_results_folder(self):
|
284 |
+
QDesktopServices.openUrl(QUrl.fromLocalFile(self.config.settings.results_path))
|
285 |
+
|
286 |
+
def on_show_previous_image(self):
|
287 |
+
if self.image_index != 0:
|
288 |
+
self.next_img_btn.setEnabled(True)
|
289 |
+
self.image_index -= 1
|
290 |
+
self.img.setPixmap(self.gen_images[self.image_index])
|
291 |
+
if self.image_index == 0:
|
292 |
+
self.previous_img_btn.setEnabled(False)
|
293 |
+
|
294 |
+
def on_path_changed(self, text):
|
295 |
+
self.config.settings.results_path = text
|
296 |
+
|
297 |
+
def on_browse_folder(self):
|
298 |
+
options = QFileDialog.Options()
|
299 |
+
options |= QFileDialog.ShowDirsOnly
|
300 |
+
|
301 |
+
folder_path = QFileDialog.getExistingDirectory(
|
302 |
+
self, "Select a Folder", "", options=options
|
303 |
+
)
|
304 |
+
|
305 |
+
if folder_path:
|
306 |
+
self.config.settings.results_path = folder_path
|
307 |
+
self.results_path.setText(folder_path)
|
308 |
+
|
309 |
+
def on_width_changed(self, index):
|
310 |
+
width_txt = self.width.itemText(index)
|
311 |
+
self.config.settings.lcm_diffusion_setting.image_width = int(width_txt)
|
312 |
+
|
313 |
+
def on_height_changed(self, index):
|
314 |
+
height_txt = self.height.itemText(index)
|
315 |
+
self.config.settings.lcm_diffusion_setting.image_height = int(height_txt)
|
316 |
+
|
317 |
+
def use_openvino_changed(self, state):
|
318 |
+
if state == 2:
|
319 |
+
self.lcm_model.setEnabled(False)
|
320 |
+
self.config.settings.lcm_diffusion_setting.use_openvino = True
|
321 |
+
else:
|
322 |
+
self.config.settings.lcm_diffusion_setting.use_openvino = False
|
323 |
+
|
324 |
+
def use_offline_model_changed(self, state):
|
325 |
+
if state == 2:
|
326 |
+
self.config.settings.lcm_diffusion_setting.use_offline_model = True
|
327 |
+
else:
|
328 |
+
self.config.settings.lcm_diffusion_setting.use_offline_model = False
|
329 |
+
|
330 |
+
def use_safety_checker_changed(self, state):
|
331 |
+
if state == 2:
|
332 |
+
self.config.settings.lcm_diffusion_setting.use_safety_checker = True
|
333 |
+
else:
|
334 |
+
self.config.settings.lcm_diffusion_setting.use_safety_checker = False
|
335 |
+
|
336 |
+
def update_steps_label(self, value):
|
337 |
+
self.inference_steps_value.setText(f"Number of inference steps: {value}")
|
338 |
+
self.config.settings.lcm_diffusion_setting.inference_steps = value
|
339 |
+
|
340 |
+
def update_num_images_label(self, value):
|
341 |
+
self.num_images_value.setText(f"Number of images: {value}")
|
342 |
+
self.config.settings.lcm_diffusion_setting.number_of_images = value
|
343 |
+
|
344 |
+
def update_guidance_label(self, value):
|
345 |
+
val = round(int(value) / 10, 1)
|
346 |
+
self.guidance_value.setText(f"Guidance scale: {val}")
|
347 |
+
self.config.settings.lcm_diffusion_setting.guidance_scale = val
|
348 |
+
|
349 |
+
def seed_changed(self, state):
|
350 |
+
if state == 2:
|
351 |
+
self.seed_value.setEnabled(True)
|
352 |
+
self.config.settings.lcm_diffusion_setting.use_seed = True
|
353 |
+
else:
|
354 |
+
self.seed_value.setEnabled(False)
|
355 |
+
self.config.settings.lcm_diffusion_setting.use_seed = False
|
356 |
+
|
357 |
+
def get_seed_value(self) -> int:
|
358 |
+
use_seed = self.config.settings.lcm_diffusion_setting.use_seed
|
359 |
+
seed_value = int(self.seed_value.text()) if use_seed else -1
|
360 |
+
return seed_value
|
361 |
+
|
362 |
+
def generate_image(self):
|
363 |
+
self.config.settings.lcm_diffusion_setting.seed = self.get_seed_value()
|
364 |
+
self.config.settings.lcm_diffusion_setting.prompt = self.prompt.toPlainText()
|
365 |
+
|
366 |
+
if self.config.settings.lcm_diffusion_setting.use_openvino:
|
367 |
+
model_id = LCM_DEFAULT_MODEL_OPENVINO
|
368 |
+
else:
|
369 |
+
model_id = self.lcm_model.text()
|
370 |
+
|
371 |
+
self.config.settings.lcm_diffusion_setting.lcm_model_id = model_id
|
372 |
+
|
373 |
+
reshape_required = False
|
374 |
+
if self.config.settings.lcm_diffusion_setting.use_openvino:
|
375 |
+
# Detect dimension change
|
376 |
+
reshape_required = is_reshape_required(
|
377 |
+
self.previous_width,
|
378 |
+
self.config.settings.lcm_diffusion_setting.image_width,
|
379 |
+
self.previous_height,
|
380 |
+
self.config.settings.lcm_diffusion_setting.image_height,
|
381 |
+
self.previous_model,
|
382 |
+
model_id,
|
383 |
+
self.previous_num_of_images,
|
384 |
+
self.config.settings.lcm_diffusion_setting.number_of_images,
|
385 |
+
)
|
386 |
+
|
387 |
+
images = self.context.generate_text_to_image(
|
388 |
+
self.config.settings,
|
389 |
+
reshape_required,
|
390 |
+
DEVICE,
|
391 |
+
)
|
392 |
+
self.image_index = 0
|
393 |
+
self.gen_images = []
|
394 |
+
for img in images:
|
395 |
+
im = ImageQt(img).copy()
|
396 |
+
pixmap = QPixmap.fromImage(im)
|
397 |
+
self.gen_images.append(pixmap)
|
398 |
+
|
399 |
+
if len(self.gen_images) > 1:
|
400 |
+
self.next_img_btn.setEnabled(True)
|
401 |
+
self.previous_img_btn.setEnabled(False)
|
402 |
+
else:
|
403 |
+
self.next_img_btn.setEnabled(False)
|
404 |
+
self.previous_img_btn.setEnabled(False)
|
405 |
+
|
406 |
+
self.img.setPixmap(self.gen_images[0])
|
407 |
+
|
408 |
+
self.previous_width = self.config.settings.lcm_diffusion_setting.image_width
|
409 |
+
self.previous_height = self.config.settings.lcm_diffusion_setting.image_height
|
410 |
+
self.previous_model = model_id
|
411 |
+
self.previous_num_of_images = (
|
412 |
+
self.config.settings.lcm_diffusion_setting.number_of_images
|
413 |
+
)
|
414 |
+
|
415 |
+
def text_to_image(self):
|
416 |
+
self.img.setText("Please wait...")
|
417 |
+
worker = ImageGeneratorWorker(self.generate_image)
|
418 |
+
self.threadpool.start(worker)
|
419 |
+
|
420 |
+
def closeEvent(self, event):
|
421 |
+
self.config.settings.lcm_diffusion_setting.seed = self.get_seed_value()
|
422 |
+
print(self.config.settings.lcm_diffusion_setting)
|
423 |
+
print("Saving settings")
|
424 |
+
self.config.save()
|
425 |
+
|
426 |
+
def reset_all_settings(self):
|
427 |
+
self.use_local_model_folder.setChecked(False)
|
428 |
+
self.width.setCurrentText("512")
|
429 |
+
self.height.setCurrentText("512")
|
430 |
+
self.inference_steps.setValue(4)
|
431 |
+
self.guidance.setValue(80)
|
432 |
+
self.use_openvino_check.setChecked(False)
|
433 |
+
self.seed_check.setChecked(False)
|
434 |
+
self.safety_checker.setChecked(True)
|
435 |
+
self.results_path.setText(FastStableDiffusionPaths().get_results_path())
|
frontend/gui/image_generator_worker.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PyQt5.QtCore import (
|
2 |
+
pyqtSlot,
|
3 |
+
QRunnable,
|
4 |
+
pyqtSignal,
|
5 |
+
pyqtSlot,
|
6 |
+
)
|
7 |
+
from PyQt5.QtCore import QObject
|
8 |
+
import traceback
|
9 |
+
import sys
|
10 |
+
|
11 |
+
|
12 |
+
class WorkerSignals(QObject):
|
13 |
+
finished = pyqtSignal()
|
14 |
+
error = pyqtSignal(tuple)
|
15 |
+
result = pyqtSignal(object)
|
16 |
+
|
17 |
+
|
18 |
+
class ImageGeneratorWorker(QRunnable):
|
19 |
+
def __init__(self, fn, *args, **kwargs):
|
20 |
+
super(ImageGeneratorWorker, self).__init__()
|
21 |
+
self.fn = fn
|
22 |
+
self.args = args
|
23 |
+
self.kwargs = kwargs
|
24 |
+
self.signals = WorkerSignals()
|
25 |
+
|
26 |
+
@pyqtSlot()
|
27 |
+
def run(self):
|
28 |
+
try:
|
29 |
+
result = self.fn(*self.args, **self.kwargs)
|
30 |
+
except:
|
31 |
+
traceback.print_exc()
|
32 |
+
exctype, value = sys.exc_info()[:2]
|
33 |
+
self.signals.error.emit((exctype, value, traceback.format_exc()))
|
34 |
+
else:
|
35 |
+
self.signals.result.emit(result)
|
36 |
+
finally:
|
37 |
+
self.signals.finished.emit()
|
frontend/gui/ui.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
from frontend.gui.app_window import MainWindow
|
3 |
+
from PyQt5.QtWidgets import QApplication
|
4 |
+
import sys
|
5 |
+
from app_settings import AppSettings
|
6 |
+
|
7 |
+
|
8 |
+
def start_gui(
|
9 |
+
argv: List[str],
|
10 |
+
app_settings: AppSettings,
|
11 |
+
):
|
12 |
+
app = QApplication(sys.argv)
|
13 |
+
window = MainWindow(app_settings)
|
14 |
+
window.show()
|
15 |
+
app.exec()
|
frontend/utils.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from constants import DEVICE
|
2 |
+
import platform
|
3 |
+
|
4 |
+
|
5 |
+
def is_reshape_required(
|
6 |
+
prev_width: int,
|
7 |
+
cur_width: int,
|
8 |
+
prev_height: int,
|
9 |
+
cur_height: int,
|
10 |
+
prev_model: int,
|
11 |
+
cur_model: int,
|
12 |
+
prev_num_of_images: int,
|
13 |
+
cur_num_of_images: int,
|
14 |
+
) -> bool:
|
15 |
+
print(f"width - {prev_width} {cur_width}")
|
16 |
+
print(f"height - {prev_height} {cur_height}")
|
17 |
+
print(f"model - {prev_model} {cur_model}")
|
18 |
+
reshape_required = False
|
19 |
+
if (
|
20 |
+
prev_width != cur_width
|
21 |
+
or prev_height != cur_height
|
22 |
+
or prev_model != cur_model
|
23 |
+
or prev_num_of_images != cur_num_of_images
|
24 |
+
):
|
25 |
+
print("Reshape and compile")
|
26 |
+
reshape_required = True
|
27 |
+
|
28 |
+
return reshape_required
|
29 |
+
|
30 |
+
|
31 |
+
def enable_openvino_controls() -> bool:
|
32 |
+
return DEVICE == "cpu" and platform.system().lower() != "darwin"
|
frontend/webui/css/style.css
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
footer {
|
2 |
+
visibility: hidden
|
3 |
+
}
|
4 |
+
|
5 |
+
#generate_button {
|
6 |
+
color: white;
|
7 |
+
border-color: #007bff;
|
8 |
+
background: #007bff;
|
9 |
+
width: 150px;
|
10 |
+
margin-top: 38px;
|
11 |
+
height: 80px;
|
12 |
+
}
|
13 |
+
|
14 |
+
#save_button {
|
15 |
+
color: white;
|
16 |
+
border-color: #028b40;
|
17 |
+
background: #01b97c;
|
18 |
+
width: 200px;
|
19 |
+
}
|
20 |
+
|
21 |
+
#settings_header {
|
22 |
+
background: rgb(245, 105, 105);
|
23 |
+
|
24 |
+
}
|
frontend/webui/text_to_image_ui.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
from backend.models.lcmdiffusion_setting import LCMDiffusionSetting
|
5 |
+
from context import Context
|
6 |
+
from models.interface_types import InterfaceType
|
7 |
+
from app_settings import Settings
|
8 |
+
from constants import LCM_DEFAULT_MODEL, LCM_DEFAULT_MODEL_OPENVINO
|
9 |
+
from frontend.utils import is_reshape_required
|
10 |
+
from app_settings import AppSettings
|
11 |
+
from constants import DEVICE
|
12 |
+
from frontend.utils import enable_openvino_controls
|
13 |
+
|
14 |
+
random_enabled = True
|
15 |
+
|
16 |
+
context = Context(InterfaceType.WEBUI)
|
17 |
+
previous_width = 0
|
18 |
+
previous_height = 0
|
19 |
+
previous_model_id = ""
|
20 |
+
previous_num_of_images = 0
|
21 |
+
|
22 |
+
|
23 |
+
def generate_text_to_image(
|
24 |
+
prompt,
|
25 |
+
image_height,
|
26 |
+
image_width,
|
27 |
+
inference_steps,
|
28 |
+
guidance_scale,
|
29 |
+
num_images,
|
30 |
+
seed,
|
31 |
+
use_openvino,
|
32 |
+
use_safety_checker,
|
33 |
+
) -> Any:
|
34 |
+
global previous_height, previous_width, previous_model_id, previous_num_of_images
|
35 |
+
model_id = LCM_DEFAULT_MODEL
|
36 |
+
if use_openvino:
|
37 |
+
model_id = LCM_DEFAULT_MODEL_OPENVINO
|
38 |
+
|
39 |
+
use_seed = True if seed != -1 else False
|
40 |
+
|
41 |
+
lcm_diffusion_settings = LCMDiffusionSetting(
|
42 |
+
lcm_model_id=model_id,
|
43 |
+
prompt=prompt,
|
44 |
+
image_height=image_height,
|
45 |
+
image_width=image_width,
|
46 |
+
inference_steps=inference_steps,
|
47 |
+
guidance_scale=guidance_scale,
|
48 |
+
number_of_images=num_images,
|
49 |
+
seed=seed,
|
50 |
+
use_openvino=use_openvino,
|
51 |
+
use_safety_checker=use_safety_checker,
|
52 |
+
use_seed=use_seed,
|
53 |
+
)
|
54 |
+
settings = Settings(
|
55 |
+
lcm_diffusion_setting=lcm_diffusion_settings,
|
56 |
+
)
|
57 |
+
reshape = False
|
58 |
+
if use_openvino:
|
59 |
+
reshape = is_reshape_required(
|
60 |
+
previous_width,
|
61 |
+
image_width,
|
62 |
+
previous_height,
|
63 |
+
image_height,
|
64 |
+
previous_model_id,
|
65 |
+
model_id,
|
66 |
+
previous_num_of_images,
|
67 |
+
num_images,
|
68 |
+
)
|
69 |
+
images = context.generate_text_to_image(
|
70 |
+
settings,
|
71 |
+
reshape,
|
72 |
+
DEVICE,
|
73 |
+
)
|
74 |
+
previous_width = image_width
|
75 |
+
previous_height = image_height
|
76 |
+
previous_model_id = model_id
|
77 |
+
previous_num_of_images = num_images
|
78 |
+
|
79 |
+
return images
|
80 |
+
|
81 |
+
|
82 |
+
def get_text_to_image_ui(app_settings: AppSettings) -> None:
|
83 |
+
with gr.Blocks():
|
84 |
+
with gr.Row():
|
85 |
+
with gr.Column():
|
86 |
+
|
87 |
+
def random_seed():
|
88 |
+
global random_enabled
|
89 |
+
random_enabled = not random_enabled
|
90 |
+
seed_val = -1
|
91 |
+
if not random_enabled:
|
92 |
+
seed_val = 42
|
93 |
+
return gr.Number.update(
|
94 |
+
interactive=not random_enabled, value=seed_val
|
95 |
+
)
|
96 |
+
|
97 |
+
with gr.Row():
|
98 |
+
prompt = gr.Textbox(
|
99 |
+
label="Describe the image you'd like to see",
|
100 |
+
lines=3,
|
101 |
+
placeholder="A fantasy landscape",
|
102 |
+
)
|
103 |
+
|
104 |
+
generate_btn = gr.Button(
|
105 |
+
"Generate",
|
106 |
+
elem_id="generate_button",
|
107 |
+
scale=0,
|
108 |
+
)
|
109 |
+
num_inference_steps = gr.Slider(
|
110 |
+
1, 25, value=4, step=1, label="Inference Steps"
|
111 |
+
)
|
112 |
+
image_height = gr.Slider(
|
113 |
+
256, 768, value=512, step=256, label="Image Height"
|
114 |
+
)
|
115 |
+
image_width = gr.Slider(
|
116 |
+
256, 768, value=512, step=256, label="Image Width"
|
117 |
+
)
|
118 |
+
num_images = gr.Slider(
|
119 |
+
1,
|
120 |
+
50,
|
121 |
+
value=1,
|
122 |
+
step=1,
|
123 |
+
label="Number of images to generate",
|
124 |
+
)
|
125 |
+
with gr.Accordion("Advanced options", open=False):
|
126 |
+
guidance_scale = gr.Slider(
|
127 |
+
1.0, 30.0, value=8, step=0.5, label="Guidance Scale"
|
128 |
+
)
|
129 |
+
|
130 |
+
seed = gr.Number(
|
131 |
+
label="Seed",
|
132 |
+
value=-1,
|
133 |
+
precision=0,
|
134 |
+
interactive=False,
|
135 |
+
)
|
136 |
+
seed_checkbox = gr.Checkbox(
|
137 |
+
label="Use random seed",
|
138 |
+
value=True,
|
139 |
+
interactive=True,
|
140 |
+
)
|
141 |
+
|
142 |
+
openvino_checkbox = gr.Checkbox(
|
143 |
+
label="Use OpenVINO",
|
144 |
+
value=False,
|
145 |
+
interactive=enable_openvino_controls(),
|
146 |
+
)
|
147 |
+
|
148 |
+
safety_checker_checkbox = gr.Checkbox(
|
149 |
+
label="Use Safety Checker",
|
150 |
+
value=True,
|
151 |
+
interactive=True,
|
152 |
+
)
|
153 |
+
|
154 |
+
input_params = [
|
155 |
+
prompt,
|
156 |
+
image_height,
|
157 |
+
image_width,
|
158 |
+
num_inference_steps,
|
159 |
+
guidance_scale,
|
160 |
+
num_images,
|
161 |
+
seed,
|
162 |
+
openvino_checkbox,
|
163 |
+
safety_checker_checkbox,
|
164 |
+
]
|
165 |
+
|
166 |
+
with gr.Column():
|
167 |
+
output = gr.Gallery(
|
168 |
+
label="Generated images",
|
169 |
+
show_label=True,
|
170 |
+
elem_id="gallery",
|
171 |
+
columns=2,
|
172 |
+
)
|
173 |
+
|
174 |
+
seed_checkbox.change(fn=random_seed, outputs=seed)
|
175 |
+
generate_btn.click(
|
176 |
+
fn=generate_text_to_image,
|
177 |
+
inputs=input_params,
|
178 |
+
outputs=output,
|
179 |
+
)
|
frontend/webui/ui.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from constants import APP_VERSION
|
3 |
+
from frontend.webui.text_to_image_ui import get_text_to_image_ui
|
4 |
+
from paths import FastStableDiffusionPaths
|
5 |
+
from app_settings import AppSettings
|
6 |
+
|
7 |
+
|
8 |
+
def _get_footer_message() -> str:
|
9 |
+
version = f"<center><p> v{APP_VERSION} "
|
10 |
+
footer_msg = version + (
|
11 |
+
' © 2023 <a href="https://github.com/rupeshs">'
|
12 |
+
" Rupesh Sreeraman</a></p></center>"
|
13 |
+
)
|
14 |
+
return footer_msg
|
15 |
+
|
16 |
+
|
17 |
+
def get_web_ui(app_settings: AppSettings) -> gr.Blocks:
|
18 |
+
with gr.Blocks(
|
19 |
+
css=FastStableDiffusionPaths.get_css_path(),
|
20 |
+
title="FastSD CPU",
|
21 |
+
) as fastsd_web_ui:
|
22 |
+
gr.HTML("<center><H1>FastSD CPU</H1></center>")
|
23 |
+
with gr.Tabs():
|
24 |
+
with gr.TabItem("Text to Image"):
|
25 |
+
get_text_to_image_ui(app_settings)
|
26 |
+
gr.HTML(_get_footer_message())
|
27 |
+
|
28 |
+
return fastsd_web_ui
|
29 |
+
|
30 |
+
|
31 |
+
def start_webui(
|
32 |
+
app_settings: AppSettings,
|
33 |
+
share: bool = False,
|
34 |
+
):
|
35 |
+
webui = get_web_ui(app_settings)
|
36 |
+
webui.launch(share=share)
|
models/__pycache__/interface_types.cpython-311.pyc
ADDED
Binary file (578 Bytes). View file
|
|
models/__pycache__/settings.cpython-311.pyc
ADDED
Binary file (899 Bytes). View file
|
|
models/interface_types.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
|
3 |
+
|
4 |
+
class InterfaceType(Enum):
|
5 |
+
WEBUI = "Web User Interface"
|
6 |
+
GUI = "Graphical User Interface"
|
7 |
+
CLI = "Command Line Interface"
|
models/settings.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel
|
2 |
+
from backend.models.lcmdiffusion_setting import LCMDiffusionSetting
|
3 |
+
from paths import FastStableDiffusionPaths
|
4 |
+
|
5 |
+
|
6 |
+
class Settings(BaseModel):
|
7 |
+
results_path: str = FastStableDiffusionPaths().get_results_path()
|
8 |
+
lcm_diffusion_setting: LCMDiffusionSetting = LCMDiffusionSetting()
|
paths.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import constants
|
3 |
+
|
4 |
+
|
5 |
+
def join_paths(
|
6 |
+
first_path: str,
|
7 |
+
second_path: str,
|
8 |
+
) -> str:
|
9 |
+
return os.path.join(first_path, second_path)
|
10 |
+
|
11 |
+
|
12 |
+
def get_app_path():
|
13 |
+
app_dir = os.path.dirname(__file__)
|
14 |
+
work_dir = os.path.dirname(app_dir)
|
15 |
+
return work_dir
|
16 |
+
|
17 |
+
|
18 |
+
def get_configs_path() -> str:
|
19 |
+
config_path = join_paths(get_app_path(), constants.CONFIG_DIRECTORY)
|
20 |
+
return config_path
|
21 |
+
|
22 |
+
|
23 |
+
class FastStableDiffusionPaths:
|
24 |
+
@staticmethod
|
25 |
+
def get_app_settings_path() -> str:
|
26 |
+
configs_path = get_configs_path()
|
27 |
+
settings_path = join_paths(
|
28 |
+
configs_path,
|
29 |
+
constants.APP_SETTINGS_FILE,
|
30 |
+
)
|
31 |
+
return settings_path
|
32 |
+
|
33 |
+
@staticmethod
|
34 |
+
def get_results_path() -> str:
|
35 |
+
results_path = join_paths(get_app_path(), constants.RESULTS_DIRECTORY)
|
36 |
+
return results_path
|
37 |
+
|
38 |
+
@staticmethod
|
39 |
+
def get_css_path():
|
40 |
+
app_dir = os.path.dirname(__file__)
|
41 |
+
css_path = os.path.join(
|
42 |
+
app_dir,
|
43 |
+
"frontend",
|
44 |
+
"webui",
|
45 |
+
"css",
|
46 |
+
"style.css",
|
47 |
+
)
|
48 |
+
return css_path
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.23.0
|
2 |
+
diffusers==0.21.4
|
3 |
+
transformers==4.34.0
|
4 |
+
PyQt5
|
5 |
+
Pillow==9.4.0
|
6 |
+
openvino==2023.1.0
|
7 |
+
optimum-intel==1.11.0
|
8 |
+
onnx==1.14.1
|
9 |
+
onnxruntime==1.16.1
|
10 |
+
pydantic==2.4.2
|
11 |
+
typing-extensions==4.8.0
|
12 |
+
pyyaml
|
13 |
+
gradio==3.39.0
|
utils.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import platform
|
2 |
+
|
3 |
+
|
4 |
+
def show_system_info():
|
5 |
+
try:
|
6 |
+
print(f"Running on {platform.system()} platform")
|
7 |
+
print(f"OS: {platform.platform()}")
|
8 |
+
print(f"Processor: {platform.processor()}")
|
9 |
+
except Exception as ex:
|
10 |
+
print(f"Error ocurred while getting system information {ex}")
|