Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
import streamlit as st | |
import socket | |
import threading | |
# Specify the model name explicitly to avoid warnings | |
model_name = "distilbert-base-uncased" | |
# Load the pre-trained sentiment-analysis pipeline | |
try: | |
classifier = pipeline('sentiment-analysis', model=model_name) | |
except Exception as e: | |
st.error(f"Error loading pipeline: {e}") | |
st.stop() | |
# Function to classify sentiment | |
def classify_text(text): | |
result = classifier(text)[0] | |
return f"{result['label']} with score {result['score']}" | |
# Function to find an available port | |
def find_free_port(): | |
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: | |
s.bind(('', 0)) | |
return s.getsockname()[1] | |
# Function to run Gradio in a separate thread | |
def run_gradio(): | |
iface = gr.Interface(fn=classify_text, inputs="text", outputs="text") | |
iface.launch(server_port=find_free_port()) | |
# Start Gradio in a separate thread | |
threading.Thread(target=run_gradio).start() | |
# Streamlit code | |
st.title('IMDb Sentiment Analysis') | |
st.write('This project performs sentiment analysis on IMDb movie reviews using Streamlit.') | |
st.text_input("Enter text for sentiment analysis", key="input_text") | |
if st.button("Classify"): | |
text = st.session_state.input_text | |
if text: | |
result = classify_text(text) | |
st.write(result) | |
else: | |
st.write("Please enter text for classification.") | |