Spaces:
Runtime error
Runtime error
File size: 9,572 Bytes
9cdb8b2 f00d508 7fdac21 9cdb8b2 7fdac21 93c8d7a 7fdac21 93c8d7a 7fdac21 93c8d7a 7fdac21 93c8d7a 7fdac21 9cdb8b2 7fdac21 9cdb8b2 1139c3b 7fdac21 9cdb8b2 23c3e28 7fdac21 9cdb8b2 23c3e28 9cdb8b2 7fdac21 23c3e28 9cdb8b2 7fdac21 9cdb8b2 1139c3b 9cdb8b2 1139c3b 9cdb8b2 1139c3b 9cdb8b2 f929de5 7fdac21 1139c3b 8615061 9cdb8b2 1139c3b 7fdac21 9cdb8b2 23c3e28 7fdac21 23c3e28 9cdb8b2 1139c3b 9cdb8b2 7fdac21 23c3e28 9cdb8b2 1139c3b 23c3e28 1139c3b 9cdb8b2 1139c3b 23c3e28 9cdb8b2 1139c3b 9cdb8b2 1139c3b 9cdb8b2 1139c3b 7fdac21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import re
import time
import asyncio
from io import BytesIO
from typing import List, Optional
import httpx
import matplotlib.pyplot as plt
import numpy as np
import torch
import PIL
import imagehash
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, CLIPModel, CLIPProcessor
from PIL import Image
class Translator:
def __init__(self, model_id: str, device: Optional[str] = None):
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
self.model_id = model_id
self.tokenizer = AutoTokenizer.from_pretrained(
model_id)
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_id).to(self.device)
@property
def _bos_token_attr(self):
if hasattr(self.tokenizer, "get_lang_id"):
return self.tokenizer.get_lang_id
elif hasattr(self.tokenizer, "lang_code_to_id"):
return self.tokenizer.lang_code_to_id
else:
return
@property
def _language_code_mapper(self):
if "nllb" in self.model_id.lower():
return {"en": "eng_Latn",
"es": "spa_Latn",
"pt": "por_Latn"}
elif "m2m" in self.model_id.lower():
return {"en": "en",
"es": "es",
"pt": "pt"}
else:
return {"en": "eng",
"es": "spa",
"pt": "por"}
def translate(self, texts: List[str], src_lang: str, dest_lang: str = "en", max_length: int = 100):
self.tokenizer.src_lang = self._language_code_mapper[src_lang]
inputs = self.tokenizer(texts, return_tensors="pt").to(self.device)
if "opus" in self.model_id.lower():
forced_bos_token_id = None
else:
forced_bos_token_id = self._bos_token_attr[self._language_code_mapper["en"]]
translated_tokens = self.model.generate(
**inputs, forced_bos_token_id=forced_bos_token_id, max_length=max_length
)
return self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)
class OffTopicDetector:
def __init__(self, model_id: str, device: Optional[str] = None, image_size: str = "E", translator: Optional[Translator] = None):
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
self.processor = CLIPProcessor.from_pretrained(model_id)
self.model = CLIPModel.from_pretrained(model_id).to(self.device)
self.image_size = image_size
self.translator = translator
def predict_probas(self, images: List[PIL.Image.Image], domain: str, site: str,
title: Optional[str] = None,
valid_templates: Optional[List[str]] = None,
invalid_classes: Optional[List[str]] = None,
autocast: bool = True):
domain = domain.lower()
if valid_templates:
valid_classes = [template.format(domain) for template in valid_templates]
else:
valid_classes = [f"a photo of {domain}", f"brochure with {domain} image", f"instructions for {domain}", f"{domain} diagram"]
if title:
if site == "CBT":
translated_title = title
else:
if site == "MLB":
src_lang = "pt"
else:
src_lang = "es"
translated_title = self.translator.translate(title, src_lang=src_lang, dest_lang="en", max_length=100)[0]
valid_classes.append(translated_title.lower())
if not invalid_classes:
invalid_classes = ["promotional ad with store information", "promotional text", "google maps screenshot", "business card", "qr code"]
n_valid = len(valid_classes)
classes = valid_classes + invalid_classes
print(f"Valid classes: {valid_classes}", f"Invalid classes: {invalid_classes}", sep="\n")
n_classes = len(classes)
if self.device == "cuda":
torch.cuda.synchronize()
start = time.time()
inputs = self.processor(text=classes, images=images, return_tensors="pt", padding=True).to(self.device)
if self.device == "cpu" and autocast is True:
autocast = False
with torch.autocast(self.device, enabled=autocast):
with torch.no_grad():
outputs = self.model(**inputs)
probas = outputs.logits_per_image.softmax(dim=1).cpu().numpy() # we can take the softmax to get the label probabilities
if self.device == "cuda":
torch.cuda.synchronize()
end = time.time()
duration = end - start
print(f"Model time: {round(duration, 2)} s",
f"Model time per image: {round(duration/len(images) * 1000, 0)} ms",
sep="\n")
valid_probas = probas[:, 0:n_valid].sum(axis=1, keepdims=True)
invalid_probas = probas[:, n_valid:n_classes].sum(axis=1, keepdims=True)
return probas, valid_probas, invalid_probas
def predict_probas_url(self, img_urls: List[str], domain: str, site:str,
title: Optional[str] = None,
valid_templates: Optional[List[str]] = None,
invalid_classes: Optional[List[str]] = None,
autocast: bool = True):
images = self.get_images(img_urls)
dedup_images = self._filter_dups(images)
return dedup_images, self.predict_probas(dedup_images, domain, site, title, valid_templates, invalid_classes, autocast)
def predict_probas_item(self, url_or_id: str,
use_title: bool = False,
valid_templates: Optional[List[str]] = None,
invalid_classes: Optional[List[str]] = None):
images, domain, site, title = self.get_item_data(url_or_id)
title = title if use_title else None
probas, valid_probas, invalid_probas = self.predict_probas(images, domain, site, title, valid_templates,
invalid_classes)
return images, domain, probas, valid_probas, invalid_probas
def apply_threshold(self, valid_probas: np.ndarray, threshold: float = 0.4):
return valid_probas >= threshold
def get_item_data(self, url_or_id: str):
if url_or_id.startswith("http"):
item_id = "".join(url_or_id.split("/")[3].split("-")[:2])
else:
item_id = re.sub("-", "", url_or_id)
start = time.time()
response = httpx.get(f"https://api.mercadolibre.com/items/{item_id}").json()
title = response["title"]
site, domain = response["domain_id"].split("-")
img_urls = [x["url"] for x in response["pictures"]]
img_urls = [x.replace("-O.jpg", f"-{self.image_size}.jpg") for x in img_urls]
domain_name = httpx.get(f"https://api.mercadolibre.com/catalog_domains/CBT-{domain}").json()["name"]
end = time.time()
duration = end - start
print(f"Items API time: {round(duration * 1000, 0)} ms")
images = self.get_images(img_urls)
dedup_images = self._filter_dups(images)
return dedup_images, domain_name, site, title
def _filter_dups(self, images: List):
if len(images) > 1:
hashes = {}
for img in images:
hashes.update({str(imagehash.average_hash(img)): img})
dedup_hashes = list(dict.fromkeys(hashes))
dedup_images = [img for hash, img in hashes.items() if hash in dedup_hashes]
else:
dedup_images = images
if (diff := len(images) - len(dedup_images)) > 0:
print(f"Filtered {diff} images out of {len(images)} due to matching hashes.")
return dedup_images
def get_images(self, urls: List[str]):
start = time.time()
images = asyncio.run(self._gather_download_tasks(urls))
end = time.time()
duration = end - start
print(f"Download time: {round(duration, 2)} s",
f"Download time per image: {round(duration/len(urls) * 1000, 0)} ms",
sep="\n")
return asyncio.run(self._gather_download_tasks(urls))
async def _gather_download_tasks(self, urls: List[str]):
async def _process_download(url: str, client: httpx.AsyncClient):
response = await client.get(url)
return Image.open(BytesIO(response.content))
async with httpx.AsyncClient() as client:
tasks = [_process_download(url, client) for url in urls]
return await asyncio.gather(*tasks)
def show(self, images: List[PIL.Image.Image], valid_probas: np.ndarray, n_cols: int = 3,
title: Optional[str] = None, threshold: Optional[float] = None):
if threshold is not None:
prediction = self.apply_threshold(valid_probas, threshold)
title_scores = [f"Valid: {pred.squeeze()}" for pred in prediction]
else:
prediction = np.round(valid_probas[:, 0], 2)
title_scores = [f"Valid: {pred:.2f}" for pred in prediction]
n_images = len(images)
n_rows = int(np.ceil(n_images / n_cols))
fig, axes = plt.subplots(n_rows, n_cols, figsize=(16, 16))
for i, ax in enumerate(axes.ravel()):
ax.axis("off")
try:
ax.imshow(images[i])
ax.set_title(title_scores[i])
except IndexError:
continue
if title:
fig.suptitle(title)
fig.tight_layout()
return |