Spaces:
Sleeping
Sleeping
File size: 10,612 Bytes
b2afdba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
"""
Adapted from: https://github.com/Vision-CAIR/MiniGPT-4/blob/main/demo.py
"""
import argparse
import os
import sys
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import gradio as gr
from global_local.common.config import Config
from global_local.common.dist_utils import get_rank
from global_local.common.registry import registry
from global_local.conversation.conversation_video import Chat, Conversation, default_conversation,SeparatorStyle,conv_llava_llama_2
import decord
decord.bridge.set_bridge('torch')
#%%
# imports modules for registration
from global_local.datasets.builders import *
from global_local.models import *
from global_local.processors import *
from global_local.runners import *
from global_local.tasks import *
#%%
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
#parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
parser.add_argument("--cfg-path", type=str, default='./eval_configs/conversation_demo.yaml', help="path to configuration file.")
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
parser.add_argument("--model_type", type=str, default='llama_v2', help="specify LLM")
parser.add_argument('--pretrained_weight_path', type=str, default="./ckpt/finetuned_model.pth", metavar='PWP',
help='path to pretrained weight path')
parser.add_argument('--num_frames_per_clip', type=int, default=16, metavar='NPPC',
help='specify how frames to use per clip')
parser.add_argument('--num_segments', type=int, default=4, metavar='NS',
help='specify number of video segments')
parser.add_argument('--hierarchical_agg_function', type=str, default="without-top-final-global-prompts-region-segment-full-dis-spatiotemporal-prompts-attn-early-attn-linear-learned", metavar='HAF',
help='specify function to merge global and clip visual representations')
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
return args
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
# ========================================
# Model Initialization
# ========================================
print('Initializing Chat')
args = parse_args()
cfg = Config(args)
model_config = cfg.model_cfg
model_config.device_8bit = args.gpu_id
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id))
model.num_frames_per_clip = args.num_frames_per_clip
model.num_segments = args.num_segments
model.hierarchical_agg_function = args.hierarchical_agg_function
model.global_region_embed_weight = None
model.initialize_visual_agg_function()
best_checkpoint = torch.load(args.pretrained_weight_path, map_location='cpu')['model_state_dict']
pretrained_dict = {}
for k, v in best_checkpoint.items():
pretrained_dict[k.replace('module.', '')] = v
model_dict = model.state_dict()
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
model.cuda().eval()
#vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
vis_processor_cfg = cfg.datasets_cfg.webvid.vis_processor.train
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id))
print('Initialization Finished')
# ========================================
# Gradio Setting
# ========================================
def gradio_reset(chat_state, img_list):
if chat_state is not None:
chat_state.messages = []
if img_list is not None:
img_list = []
return None, gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your video first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list
def upload_imgorvideo(gr_video, gr_img, text_input, chat_state,chatbot):
if args.model_type == 'vicuna':
chat_state = default_conversation.copy()
else:
chat_state = conv_llava_llama_2.copy()
if gr_img is None and gr_video is None:
return None, None, None, gr.update(interactive=True), chat_state, None
elif gr_img is not None and gr_video is None:
print(gr_img)
chatbot = chatbot + [((gr_img,), None)]
chat_state.system = "You are able to understand the visual content that the user provides. Follow the instructions carefully and explain your answers in detail."
img_list = []
llm_message = chat.upload_img(gr_img, chat_state, img_list)
return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list,chatbot
elif gr_video is not None and gr_img is None:
print(gr_video)
chatbot = chatbot + [((gr_video,), None)]
chat_state.system = "You are able to understand the visual content that the user provides. Follow the instructions carefully and explain your answers in detail."
img_list = []
llm_message = chat.upload_video_without_audio(gr_video, chat_state, img_list)
return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list,chatbot
else:
# img_list = []
return gr.update(interactive=False), gr.update(interactive=False, placeholder='Currently, only one input is supported'), gr.update(value="Currently, only one input is supported", interactive=False), chat_state, None,chatbot
def gradio_ask(user_message, chatbot, chat_state):
if len(user_message) == 0:
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
chat.ask(user_message, chat_state)
chatbot = chatbot + [[user_message, None]]
return '', chatbot, chat_state
def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
llm_message = chat.answer(conv=chat_state,
img_list=img_list,
num_beams=num_beams,
temperature=temperature,
max_new_tokens=300,
max_length=2000)[0]
chatbot[-1][1] = llm_message
print(chat_state.get_prompt())
print(chat_state)
return chatbot, chat_state, img_list
title = """
<h1 align="center">Global-Local QFormer for Long Video Understanding with LLMs</h1>
<h5 align="center"> Introduction: We introduce a Global-Local QFormer video model that is connected with a Large Language Model to understand \
and answer questions about long videos. </h5>
<div style='display:flex; gap: 0.25rem; '>
<a href='https://huggingface.co/spaces/rxtan/rxtan/Global-Local-QFormer-Video-LLM'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
<a href=''><img src='https://img.shields.io/badge/Paper-PDF-red'></a>
</div>
Thank you for using the Global-Local QFormer Demo Page! If you have any questions or feedback, feel free to contact us.
Current online demo uses the 7B version of Llama-2 due to resource limitations.
"""
Note_markdown = ("""
### We note that our Global-Local QFormer model may be limited at understanding videos from rare domains. Due to the pretraining data, the \
model may be susceptible to hallucinations
We would like to acknowledge the Video-LLama repository which we copied the demo layout from.
**Boston University**
""")
cite_markdown = ("""
""")
#case_note_upload = ("""
### We provide some examples at the bottom of the page. Simply click on them to try them out directly.
#""")
#TODO show examples below
with gr.Blocks() as demo:
gr.Markdown(title)
with gr.Row():
with gr.Column(scale=0.5):
video = gr.Video()
#image = gr.Image(type="filepath")
#gr.Markdown(case_note_upload)
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
clear = gr.Button("Restart")
num_beams = gr.Slider(
minimum=1,
maximum=10,
value=1,
step=1,
interactive=True,
label="beam search numbers)",
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
interactive=True,
label="Temperature",
)
audio = gr.Checkbox(interactive=True, value=False, label="Audio")
gr.Markdown(Note_markdown)
with gr.Column():
chat_state = gr.State()
img_list = gr.State()
chatbot = gr.Chatbot(label='Global-Local QFormer')
text_input = gr.Textbox(label='User', placeholder='Please upload your video first.', interactive=False)
'''with gr.Column():
gr.Examples(examples=[
[f"examples/skateboarding_dog.mp4", "What is the dog doing? "],
[f"examples/birthday.mp4", "What is the boy doing? "],
[f"examples/IronMan.mp4", "Is the guy in the video Iron Man? "],
], inputs=[video, text_input])'''
gr.Markdown(cite_markdown)
upload_button.click(upload_imgorvideo, [video, text_input, chat_state,chatbot], [video, text_input, upload_button, chat_state, img_list,chatbot])
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
)
clear.click(gradio_reset, [chat_state, img_list], [chatbot, video, text_input, upload_button, chat_state, img_list], queue=False)
#demo.launch(share=False, enable_queue=True, debug=True)
demo.launch(share=False, debug=True) |