File size: 9,608 Bytes
ed8f39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df2cfd0
ed8f39e
df2cfd0
ed8f39e
 
 
 
df2cfd0
 
 
ed8f39e
 
 
 
 
 
 
 
 
be6363a
ed8f39e
be6363a
ed8f39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de8e7a4
ed8f39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
"""
Emotion Detection:
Model from: https://github.com/onnx/models/blob/main/vision/body_analysis/emotion_ferplus/model/emotion-ferplus-8.onnx
Model name: emotion-ferplus-8.onnx
"""

import cv2
import numpy as np
import time
import os

from cv2 import dnn
from math import ceil

import logging
import queue
from pathlib import Path
from typing import List, NamedTuple

import av
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer

from sample_utils.download import download_file
from sample_utils.turn import get_ice_servers

HERE = Path(__file__).parent
ROOT = HERE.parent

logger = logging.getLogger(__name__)

ONNX_MODEL_URL = "https://github.com/spmallick/learnopencv/raw/master/Facial-Emotion-Recognition/emotion-ferplus-8.onnx"  # noqa: E501
ONNX_MODEL_LOCAL_PATH = ROOT / "./emotion-ferplus-8.onnx"
CAFFE_MODEL_URL = "https://github.com/spmallick/learnopencv/raw/master/Facial-Emotion-Recognition/RFB-320/RFB-320.caffemodel"  # noqa: E501
CAFFE_MODEL_LOCAL_PATH = ROOT / "./RFB-320/RFB-320.caffemodel"
PROTOTXT_URL = "https://github.com/spmallick/learnopencv/raw/master/Facial-Emotion-Recognition/RFB-320/RFB-320.prototxt"  # noqa: E501
PROTOTXT_LOCAL_PATH = ROOT / "./RFB-320/RFB-320.prototxt.txt"

download_file(ONNX_MODEL_URL, ONNX_MODEL_LOCAL_PATH, expected_size=None)
download_file(CAFFE_MODEL_URL, CAFFE_MODEL_LOCAL_PATH, expected_size=None)
download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=None)

# Session-specific caching
onnx_cache_key = "onnx_model"
caffe_cache_key = "caffe_model"

if onnx_cache_key in st.session_state and caffe_cache_key in st.session_state:
    model = st.session_state[onnx_cache_key]
    net = st.session_state[caffe_cache_key]
else:
    # emotion detection model
    model = cv2.dnn.readNetFromONNX(str(ONNX_MODEL_LOCAL_PATH))
    # face detection model
    net = cv2.dnn.readNetFromCaffe(str(PROTOTXT_LOCAL_PATH), str(CAFFE_MODEL_LOCAL_PATH))
    st.session_state[onnx_cache_key] = model
    st.session_state[caffe_cache_key] = net

image_mean = np.array([127, 127, 127])
image_std = 128.0
iou_threshold = 0.3
center_variance = 0.1
size_variance = 0.2
min_boxes = [
    [10.0, 16.0, 24.0], 
    [32.0, 48.0], 
    [64.0, 96.0], 
    [128.0, 192.0, 256.0]
]
strides = [8.0, 16.0, 32.0, 64.0]
threshold = 0.5

emotion_dict = {
        0: 'neutral', 
        1: 'happiness', 
        2: 'surprise', 
        3: 'sadness',
        4: 'anger', 
        5: 'disgust', 
        6: 'fear'
    }

def define_img_size(image_size):
    shrinkage_list = []
    feature_map_w_h_list = []
    for size in image_size:
        feature_map = [int(ceil(size / stride)) for stride in strides]
        feature_map_w_h_list.append(feature_map)

    for i in range(0, len(image_size)):
        shrinkage_list.append(strides)
    priors = generate_priors(
        feature_map_w_h_list, shrinkage_list, image_size, min_boxes
    )
    return priors


def generate_priors(
    feature_map_list, shrinkage_list, image_size, min_boxes
):
    priors = []
    for index in range(0, len(feature_map_list[0])):
        scale_w = image_size[0] / shrinkage_list[0][index]
        scale_h = image_size[1] / shrinkage_list[1][index]
        for j in range(0, feature_map_list[1][index]):
            for i in range(0, feature_map_list[0][index]):
                x_center = (i + 0.5) / scale_w
                y_center = (j + 0.5) / scale_h

                for min_box in min_boxes[index]:
                    w = min_box / image_size[0]
                    h = min_box / image_size[1]
                    priors.append([
                        x_center,
                        y_center,
                        w,
                        h
                    ])
    print("priors nums:{}".format(len(priors)))
    return np.clip(priors, 0.0, 1.0)


def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200):
    scores = box_scores[:, -1]
    boxes = box_scores[:, :-1]
    picked = []
    indexes = np.argsort(scores)
    indexes = indexes[-candidate_size:]
    while len(indexes) > 0:
        current = indexes[-1]
        picked.append(current)
        if 0 < top_k == len(picked) or len(indexes) == 1:
            break
        current_box = boxes[current, :]
        indexes = indexes[:-1]
        rest_boxes = boxes[indexes, :]
        iou = iou_of(
            rest_boxes,
            np.expand_dims(current_box, axis=0),
        )
        indexes = indexes[iou <= iou_threshold]
    return box_scores[picked, :]


def area_of(left_top, right_bottom):
    hw = np.clip(right_bottom - left_top, 0.0, None)
    return hw[..., 0] * hw[..., 1]


def iou_of(boxes0, boxes1, eps=1e-5):
    overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2])
    overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:]) 

    overlap_area = area_of(overlap_left_top, overlap_right_bottom)
    area0 = area_of(boxes0[..., :2], boxes0[..., 2:])
    area1 = area_of(boxes1[..., :2], boxes1[..., 2:])
    return overlap_area / (area0 + area1 - overlap_area + eps)


def predict(
    width, 
    height, 
    confidences, 
    boxes, 
    prob_threshold, 
    iou_threshold=0.3, 
    top_k=-1
):
    boxes = boxes[0]
    confidences = confidences[0]
    picked_box_probs = []
    picked_labels = []
    for class_index in range(1, confidences.shape[1]):
        probs = confidences[:, class_index]
        mask = probs > prob_threshold
        probs = probs[mask]
        if probs.shape[0] == 0:
            continue
        subset_boxes = boxes[mask, :]
        box_probs = np.concatenate(
            [subset_boxes, probs.reshape(-1, 1)], axis=1
        )
        box_probs = hard_nms(box_probs,
                             iou_threshold=iou_threshold,
                             top_k=top_k,
                             )
        picked_box_probs.append(box_probs)
        picked_labels.extend([class_index] * box_probs.shape[0])
    if not picked_box_probs:
        return np.array([]), np.array([]), np.array([])
    picked_box_probs = np.concatenate(picked_box_probs)
    picked_box_probs[:, 0] *= width
    picked_box_probs[:, 1] *= height
    picked_box_probs[:, 2] *= width
    picked_box_probs[:, 3] *= height
    return (
        picked_box_probs[:, :4].astype(np.int32), 
        np.array(picked_labels), 
        picked_box_probs[:, 4]
    )


def convert_locations_to_boxes(locations, priors, center_variance,
                               size_variance):
    if len(priors.shape) + 1 == len(locations.shape):
        priors = np.expand_dims(priors, 0)
    return np.concatenate([
        locations[..., :2] * center_variance * priors[..., 2:] + priors[..., :2],
        np.exp(locations[..., 2:] * size_variance) * priors[..., 2:]
    ], axis=len(locations.shape) - 1)


def center_form_to_corner_form(locations):
    return np.concatenate(
        [locations[..., :2] - locations[..., 2:] / 2,
         locations[..., :2] + locations[..., 2:] / 2], 
        len(locations.shape) - 1
    )


def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
    
    frame = frame.to_ndarray(format="bgr24")

    input_size = [320, 240]
    width = input_size[0]
    height = input_size[1]
    priors = define_img_size(input_size)

    img_ori = frame
    #print("frame size: ", frame.shape)
    rect = cv2.resize(img_ori, (width, height))
    rect = cv2.cvtColor(rect, cv2.COLOR_BGR2RGB)
    net.setInput(dnn.blobFromImage(
        rect, 1 / image_std, (width, height), 127)
    )
    start_time = time.time()
    boxes, scores = net.forward(["boxes", "scores"])
    boxes = np.expand_dims(np.reshape(boxes, (-1, 4)), axis=0)
    scores = np.expand_dims(np.reshape(scores, (-1, 2)), axis=0)
    boxes = convert_locations_to_boxes(
        boxes, priors, center_variance, size_variance
    )
    boxes = center_form_to_corner_form(boxes)
    boxes, labels, probs = predict(
        img_ori.shape[1], 
        img_ori.shape[0], 
        scores, 
        boxes, 
        threshold
    )
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    for (x1, y1, x2, y2) in boxes:
        w = x2 - x1
        h = y2 - y1
        cv2.rectangle(frame, (x1,y1), (x2, y2), (255,0,0), 2)
        resize_frame = cv2.resize(
            gray[y1:y1 + h, x1:x1 + w], (64, 64)
        )
        resize_frame = resize_frame.reshape(1, 1, 64, 64)
        model.setInput(resize_frame)
        output = model.forward()
        end_time = time.time()
        fps = 1 / (end_time - start_time)
        print(f"FPS: {fps:.1f}")
        pred = emotion_dict[list(output[0]).index(max(output[0]))]
        cv2.rectangle(
            img_ori, 
            (x1, y1), 
            (x2, y2), 
            (215, 5, 247), 
            2,
            lineType=cv2.LINE_AA
        )
        cv2.putText(
            frame, 
            pred, 
            (x1, y1-10), 
            cv2.FONT_HERSHEY_SIMPLEX, 
            0.8, 
            (215, 5, 247), 
            2,
            lineType=cv2.LINE_AA
        )
    
    return av.VideoFrame.from_ndarray(frame, format="bgr24")

if __name__ == "__main__":
    webrtc_ctx = webrtc_streamer(
        key="face-emotion-recognition",
        mode=WebRtcMode.SENDRECV,
        rtc_configuration={
            "iceServers": get_ice_servers(),
            "iceTransportPolicy": "relay",
        },
        video_frame_callback=video_frame_callback,
        media_stream_constraints={"video": True, "audio": False},
        async_processing=True,
    )


    st.markdown(
        "This demo uses a model and code from "
        "https://github.com/spmallick/learnopencv. "
        "Many thanks to the project."
    )