Spaces:
Paused
Paused
File size: 9,608 Bytes
ed8f39e df2cfd0 ed8f39e df2cfd0 ed8f39e df2cfd0 ed8f39e be6363a ed8f39e be6363a ed8f39e de8e7a4 ed8f39e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
"""
Emotion Detection:
Model from: https://github.com/onnx/models/blob/main/vision/body_analysis/emotion_ferplus/model/emotion-ferplus-8.onnx
Model name: emotion-ferplus-8.onnx
"""
import cv2
import numpy as np
import time
import os
from cv2 import dnn
from math import ceil
import logging
import queue
from pathlib import Path
from typing import List, NamedTuple
import av
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
from sample_utils.download import download_file
from sample_utils.turn import get_ice_servers
HERE = Path(__file__).parent
ROOT = HERE.parent
logger = logging.getLogger(__name__)
ONNX_MODEL_URL = "https://github.com/spmallick/learnopencv/raw/master/Facial-Emotion-Recognition/emotion-ferplus-8.onnx" # noqa: E501
ONNX_MODEL_LOCAL_PATH = ROOT / "./emotion-ferplus-8.onnx"
CAFFE_MODEL_URL = "https://github.com/spmallick/learnopencv/raw/master/Facial-Emotion-Recognition/RFB-320/RFB-320.caffemodel" # noqa: E501
CAFFE_MODEL_LOCAL_PATH = ROOT / "./RFB-320/RFB-320.caffemodel"
PROTOTXT_URL = "https://github.com/spmallick/learnopencv/raw/master/Facial-Emotion-Recognition/RFB-320/RFB-320.prototxt" # noqa: E501
PROTOTXT_LOCAL_PATH = ROOT / "./RFB-320/RFB-320.prototxt.txt"
download_file(ONNX_MODEL_URL, ONNX_MODEL_LOCAL_PATH, expected_size=None)
download_file(CAFFE_MODEL_URL, CAFFE_MODEL_LOCAL_PATH, expected_size=None)
download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=None)
# Session-specific caching
onnx_cache_key = "onnx_model"
caffe_cache_key = "caffe_model"
if onnx_cache_key in st.session_state and caffe_cache_key in st.session_state:
model = st.session_state[onnx_cache_key]
net = st.session_state[caffe_cache_key]
else:
# emotion detection model
model = cv2.dnn.readNetFromONNX(str(ONNX_MODEL_LOCAL_PATH))
# face detection model
net = cv2.dnn.readNetFromCaffe(str(PROTOTXT_LOCAL_PATH), str(CAFFE_MODEL_LOCAL_PATH))
st.session_state[onnx_cache_key] = model
st.session_state[caffe_cache_key] = net
image_mean = np.array([127, 127, 127])
image_std = 128.0
iou_threshold = 0.3
center_variance = 0.1
size_variance = 0.2
min_boxes = [
[10.0, 16.0, 24.0],
[32.0, 48.0],
[64.0, 96.0],
[128.0, 192.0, 256.0]
]
strides = [8.0, 16.0, 32.0, 64.0]
threshold = 0.5
emotion_dict = {
0: 'neutral',
1: 'happiness',
2: 'surprise',
3: 'sadness',
4: 'anger',
5: 'disgust',
6: 'fear'
}
def define_img_size(image_size):
shrinkage_list = []
feature_map_w_h_list = []
for size in image_size:
feature_map = [int(ceil(size / stride)) for stride in strides]
feature_map_w_h_list.append(feature_map)
for i in range(0, len(image_size)):
shrinkage_list.append(strides)
priors = generate_priors(
feature_map_w_h_list, shrinkage_list, image_size, min_boxes
)
return priors
def generate_priors(
feature_map_list, shrinkage_list, image_size, min_boxes
):
priors = []
for index in range(0, len(feature_map_list[0])):
scale_w = image_size[0] / shrinkage_list[0][index]
scale_h = image_size[1] / shrinkage_list[1][index]
for j in range(0, feature_map_list[1][index]):
for i in range(0, feature_map_list[0][index]):
x_center = (i + 0.5) / scale_w
y_center = (j + 0.5) / scale_h
for min_box in min_boxes[index]:
w = min_box / image_size[0]
h = min_box / image_size[1]
priors.append([
x_center,
y_center,
w,
h
])
print("priors nums:{}".format(len(priors)))
return np.clip(priors, 0.0, 1.0)
def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200):
scores = box_scores[:, -1]
boxes = box_scores[:, :-1]
picked = []
indexes = np.argsort(scores)
indexes = indexes[-candidate_size:]
while len(indexes) > 0:
current = indexes[-1]
picked.append(current)
if 0 < top_k == len(picked) or len(indexes) == 1:
break
current_box = boxes[current, :]
indexes = indexes[:-1]
rest_boxes = boxes[indexes, :]
iou = iou_of(
rest_boxes,
np.expand_dims(current_box, axis=0),
)
indexes = indexes[iou <= iou_threshold]
return box_scores[picked, :]
def area_of(left_top, right_bottom):
hw = np.clip(right_bottom - left_top, 0.0, None)
return hw[..., 0] * hw[..., 1]
def iou_of(boxes0, boxes1, eps=1e-5):
overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2])
overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:])
overlap_area = area_of(overlap_left_top, overlap_right_bottom)
area0 = area_of(boxes0[..., :2], boxes0[..., 2:])
area1 = area_of(boxes1[..., :2], boxes1[..., 2:])
return overlap_area / (area0 + area1 - overlap_area + eps)
def predict(
width,
height,
confidences,
boxes,
prob_threshold,
iou_threshold=0.3,
top_k=-1
):
boxes = boxes[0]
confidences = confidences[0]
picked_box_probs = []
picked_labels = []
for class_index in range(1, confidences.shape[1]):
probs = confidences[:, class_index]
mask = probs > prob_threshold
probs = probs[mask]
if probs.shape[0] == 0:
continue
subset_boxes = boxes[mask, :]
box_probs = np.concatenate(
[subset_boxes, probs.reshape(-1, 1)], axis=1
)
box_probs = hard_nms(box_probs,
iou_threshold=iou_threshold,
top_k=top_k,
)
picked_box_probs.append(box_probs)
picked_labels.extend([class_index] * box_probs.shape[0])
if not picked_box_probs:
return np.array([]), np.array([]), np.array([])
picked_box_probs = np.concatenate(picked_box_probs)
picked_box_probs[:, 0] *= width
picked_box_probs[:, 1] *= height
picked_box_probs[:, 2] *= width
picked_box_probs[:, 3] *= height
return (
picked_box_probs[:, :4].astype(np.int32),
np.array(picked_labels),
picked_box_probs[:, 4]
)
def convert_locations_to_boxes(locations, priors, center_variance,
size_variance):
if len(priors.shape) + 1 == len(locations.shape):
priors = np.expand_dims(priors, 0)
return np.concatenate([
locations[..., :2] * center_variance * priors[..., 2:] + priors[..., :2],
np.exp(locations[..., 2:] * size_variance) * priors[..., 2:]
], axis=len(locations.shape) - 1)
def center_form_to_corner_form(locations):
return np.concatenate(
[locations[..., :2] - locations[..., 2:] / 2,
locations[..., :2] + locations[..., 2:] / 2],
len(locations.shape) - 1
)
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
frame = frame.to_ndarray(format="bgr24")
input_size = [320, 240]
width = input_size[0]
height = input_size[1]
priors = define_img_size(input_size)
img_ori = frame
#print("frame size: ", frame.shape)
rect = cv2.resize(img_ori, (width, height))
rect = cv2.cvtColor(rect, cv2.COLOR_BGR2RGB)
net.setInput(dnn.blobFromImage(
rect, 1 / image_std, (width, height), 127)
)
start_time = time.time()
boxes, scores = net.forward(["boxes", "scores"])
boxes = np.expand_dims(np.reshape(boxes, (-1, 4)), axis=0)
scores = np.expand_dims(np.reshape(scores, (-1, 2)), axis=0)
boxes = convert_locations_to_boxes(
boxes, priors, center_variance, size_variance
)
boxes = center_form_to_corner_form(boxes)
boxes, labels, probs = predict(
img_ori.shape[1],
img_ori.shape[0],
scores,
boxes,
threshold
)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
for (x1, y1, x2, y2) in boxes:
w = x2 - x1
h = y2 - y1
cv2.rectangle(frame, (x1,y1), (x2, y2), (255,0,0), 2)
resize_frame = cv2.resize(
gray[y1:y1 + h, x1:x1 + w], (64, 64)
)
resize_frame = resize_frame.reshape(1, 1, 64, 64)
model.setInput(resize_frame)
output = model.forward()
end_time = time.time()
fps = 1 / (end_time - start_time)
print(f"FPS: {fps:.1f}")
pred = emotion_dict[list(output[0]).index(max(output[0]))]
cv2.rectangle(
img_ori,
(x1, y1),
(x2, y2),
(215, 5, 247),
2,
lineType=cv2.LINE_AA
)
cv2.putText(
frame,
pred,
(x1, y1-10),
cv2.FONT_HERSHEY_SIMPLEX,
0.8,
(215, 5, 247),
2,
lineType=cv2.LINE_AA
)
return av.VideoFrame.from_ndarray(frame, format="bgr24")
if __name__ == "__main__":
webrtc_ctx = webrtc_streamer(
key="face-emotion-recognition",
mode=WebRtcMode.SENDRECV,
rtc_configuration={
"iceServers": get_ice_servers(),
"iceTransportPolicy": "relay",
},
video_frame_callback=video_frame_callback,
media_stream_constraints={"video": True, "audio": False},
async_processing=True,
)
st.markdown(
"This demo uses a model and code from "
"https://github.com/spmallick/learnopencv. "
"Many thanks to the project."
) |